Vacuum duplicating products are high-precision replicas created by pouring liquid materials (Par exemple, résine, polyuréthane) into molds—made from prototypes like 3D prints or CNC parts—under vacuum conditions. This process eliminates air bubbles, ensuring the final product mirrors the prototype’s shape, texture, and details with exceptional accuracy. Des pièces automobiles aux dispositifs médicaux, these products play a critical role in small-batch production, design testing, et personnalisation. This article breaks down their core principles, sélections de matériaux, production workflows, and applications—with clear comparisons and tips to help you achieve consistent, Résultats de haute qualité.
1. Définition de base & Working Principle of Vacuum Duplicating Products
To understand their value, it’s first critical to clarify what vacuum duplicating products are and how the vacuum process ensures their precision.
1.1 Définition
Vacuum duplicating products are physical replicas of a maître prototype (Par exemple, 3D-printed resin part, CNC-machined metal component) produced via the following steps:
- Un moule (typically silicone or epoxy) is created from the master prototype.
- Matériaux liquides (Par exemple, résine, polyuréthane) are poured into the mold under vacuum pressure (-0.095 à -0.1MPA).
- Le matériau guérit (at room temperature or with heat) to form a solid product that matches the prototype’s shape and details.
1.2 Principe clé: Why Vacuum Matters
The vacuum environment solves two critical challenges of traditional casting:
- Bubble Elimination: Vacuum pressure removes trapped air from the liquid material, preventing voids or surface defects in the final product. Par exemple, a silicone mold for a dental crown prototype would trap air bubbles without vacuum—resulting in a crown with gaps that don’t fit the patient’s tooth.
- Full Detail Filling: Reduced pressure lowers the material’s viscosity, letting it flow into tiny mold cavities (Par exemple, 0.05mm-wide textures on a phone case prototype) that gravity alone can’t reach.
Exemple du monde réel: An aerospace engineer uses vacuum duplicating to create a replica of an aircraft wing component. The vacuum ensures the resin fills every small channel in the mold—critical for testing how air flows through the component during flight.
2. Sélection des matériaux: Moules, Prototypes, and Casting Materials
The quality of vacuum duplicating products depends entirely on choosing the right materials for each stage. Below is a breakdown of core materials and their use cases:
2.1 Moule: The “Negative Template”
Molds determine the product’s detail retention and durability. Choose based on your prototype’s complexity and batch size:
Matériau de moule | Caractéristiques clés | Exigences de durcissement | Applications idéales |
Silicone | – Haute flexibilité (Shore A 20–40) for easy demolding of complex parts (Par exemple, sous-dépouille).- Excellent detail retention (captures 0.05mm textures).- Résistance à la température (-60° C à 300 ° C).- Reusable 20–50 cycles. | – Durcissement à température ambiante (20°C–25°C): 4–8 hours.- Durcissement accéléré (50°C–60°C): 2–3 hours.- Requires vacuum degassing to remove mold bubbles. | Small-batch functional parts: boîtiers de dispositifs médicaux (hearing aids), composants jouets, and consumer electronics prototypes (Boutons de la télécommande du téléviseur). |
Résine époxy | – Dureté élevée (Shore D 60–80) for tight dimensional accuracy (± 0,05 mm).- Good heat/chemical resistance (120°C–180°C after curing).- Less flexible than silicone; better for flat/geometric parts. | – Durcissement à température ambiante: 8–12 hours.- Post-durcissement (80° C): 1 heure (stimule la force).- Needs release agents (sticks to prototypes without them). | Pièces de haute précision: composants aérospatiaux (engine conduits), Shels de dispositif électronique (smartwatch casings), et supports structurels. |
2.2 Matériaux de coulée: The “Final Product”
Select based on the product’s end-use (force, flexibilité, transparence):
Casting Material | Propriétés clés | Vacuum Casting Tips | Applications idéales |
Unsaturated Polyester Resin | – Faible coût ($15–30 per kg).- Durcissement rapide (30–60 minutes with accelerator).- Easy to color (add pigments for custom shades).- Force modérée (résistance à la traction: 30–40 MPa). | – Mix with 1% accelerator + 1% catalyst.- Pour quickly—short pot life (20–30 minutes). | Pièces décoratives: furniture trim, sculptures d'art, and low-stress consumer goods (Par exemple, plastic plant pots). |
Résine époxy | – Forte résistance (résistance à la traction: 50–80 MPa) and chemical resistance.- Faible retrait (0.5–1%) for dimensional stability.- Résistant à la chaleur (120°C–180°C after curing). | – Utiliser 1:1 resin-to-hardener ratio.- Degas for 1–2 minutes to remove bubbles. | Parties structurelles: garniture intérieure automobile (panneaux de tableau de bord), Poignées des dispositifs médicaux, and aerospace prototypes. |
Polyuréthane (Puan) | – Flexible (Shore A 30–80) or rigid (Shore D 60–80) variants.- Bonne résistance à l'usure (ideal for parts with friction, Par exemple, semelles).- Durcissement rapide (1–2 hours at 20°C). | – Avoid overmixing (causes premature curing).- Cure at room temperature for best flexibility. | Parties fonctionnelles: soft gaskets (pour l'électronique), cushioning (chair pads), and custom insoles. |
2.3 Matériaux prototypes: The “Master Model”
Prototypes are the foundation of accurate replicas. Choose based on precision needs:
Matériau prototype | Traits clés | Compatibility with Molds | Idéal pour |
SLA 3D-Printed Resin | – Haute précision (± 0,05 mm) for intricate details.- Surface lisse (Sortie 0,8 μm) reduces mold finishing time. | Excellent with silicone/epoxy molds; use silicone oil as a release agent. | Parties complexes: couronnes dentaires, jewelry patterns, and electronic device shells. |
CNC-Machined Metal | – Ultra-durable (reusable for 100+ mold makings).- High surface finish (RA 0,4 μm) for mirror-like replicas. | Good with epoxy molds; use petroleum jelly to prevent sticking. | Industrial masters: pièces automobiles, composants aérospatiaux, and high-wear prototypes. |
FDM 3D-Printed PLA | – Faible coût ($50–100 per prototype).- Facile à machine (sand to smooth surfaces).- Précision (± 0,1 mm - ± 0,3 mm). | Suitable for silicone molds; sand layer lines first to avoid texture transfer. | Prototypes à faible coût: pièces de jouets, simple consumer goods, and design concept tests. |
3. Flux de production étape par étape
Creating vacuum duplicating products follows a linear, repeatable process—each step critical to avoiding defects.
3.1 Scène 1: Master Prototype Preparation
- Faire le ménage & Lisse:
- Essuyez le prototype avec de l'alcool isopropylique (70%–90%) Pour enlever la poussière, huile, ou des résidus d'impression 3D.
- Sand FDM prototypes with 400–1500 grit sandpaper to eliminate layer lines—uneven surfaces will be replicated in the mold.
- Appliquer l'agent de démoulage:
- Use silicone oil for plastic/metal prototypes, petroleum jelly for wax prototypes, or specialized spray for silicone-on-silicone replication.
- Appliquer un mince, even layer—thick coats distort details, while missing spots cause the mold to stick to the prototype.
3.2 Scène 2: Fabrication de moisissures
Using silicone (the most common mold material) as an example:
- Frame Setup:
- Place the prototype in a plastic/wood frame and seal edges with masking tape to prevent silicone leakage.
- Ensure 5–10mm of space between the prototype and frame (for even silicone coverage).
- Mélange de silicone & Dégazage:
- Mix silicone base and curing agent at a 10:1 rapport (condensation silicone) ou 1:1 rapport (additive silicone). Stir slowly for 2–3 minutes to avoid bubbles.
- Place the mixture in a vacuum chamber (-0.1MPA) for 1–2 minutes to remove trapped air.
- Coulant & Durcissement:
- Pour silicone slowly over the prototype (tilt the frame to 45° to reduce splashing).
- Cure at 20°C–25°C for 6 heures (ou 3 hours at 60°C for faster results).
3.3 Scène 3: Moulage à vide & Durcissement
- Préparation des matériaux:
- Mix the casting material (Par exemple, epoxy resin at 1:1 rapport) Selon les instructions du fabricant.
- Moulage à vide:
- Pour the material into the silicone mold and place the assembly in a vacuum chamber (-0.095 à -0.1MPA) for 2–3 minutes.
- The vacuum ensures the material fills every mold cavity—critical for parts like dental crowns or aerospace components.
- Durcissement:
- Durcissement à température ambiante: Résine PU (1–2 heures), unsaturated polyester resin (30–60 minutes).
- Heat curing: Résine époxy (60° C pour 2 heures) for increased strength.
3.4 Scène 4: Démêlé & Finition
- Démêlé:
- Gently peel the silicone mold from the product—silicone’s flexibility prevents damage to both the product and mold. For epoxy molds, use a release tool to pry the mold open (epoxy is rigid).
- Finition:
- Couper l'excédent de matériau (éclair) with a sharp knife.
- Sand the product with 400–800 grit sandpaper for a smooth finish. For high-gloss parts (Par exemple, caisses téléphoniques), apply a clear varnish.
4. Key Application Fields of Vacuum Duplicating Products
Vacuum duplicating products excel in industries where precision, production de petits lots, and customization are critical:
4.1 Fabrication industrielle
- Automobile: Produce small batches (10–50 unités) of interior parts (Par exemple, panneaux de tableau de bord, poignées de porte) for design verification. Par exemple, a car manufacturer uses vacuum duplicating to test 20 different dashboard designs—saving $50,000 compared to making steel molds for each design.
- Aérospatial: Create replicas of complex components (Par exemple, gicleurs de moteur, sections d'aile) for stress testing. The vacuum ensures the replica’s internal channels match the prototype—critical for testing fuel flow during flight.
4.2 Dispositifs médicaux
- Dentisterie: Produce custom dental crowns and bridges from 3D-printed tooth models. Vacuum duplicating ensures the crown fits the patient’s tooth exactly—reducing the need for adjustments during surgery.
- Prothèse: Create prototypes of prosthetic limbs (Par exemple, hand shells) using biocompatible polyurethane. The vacuum ensures the shell’s texture is smooth enough for skin contact.
4.3 Biens de consommation
- Électronique: Test non-metallic device shells (Par exemple, TV remote casings, étuis pour smartphone) for appearance and fit. A tech startup uses vacuum duplicating to produce 30 phone case prototypes—testing how well the case protects the phone from drops.
- Jouets: Manufacture limited-edition toys (Par exemple, anime figurines) with intricate details. Vacuum duplicating captures tiny features (Par exemple, a figurine’s facial expressions) that mass-production molds can’t replicate cost-effectively.
5. Avantages & Limitations of Vacuum Duplicating Products
5.1 Avantages de base
- Haute précision: Dimensional accuracy of ±0.1mm–±0.3mm, with detail retention down to 0.05mm.
- Faible coût: Mold costs are 80% lower than traditional steel molds (Par exemple, \(500 pour un moule en silicone vs. \)5,000 pour l'acier). Idéal pour les petits lots (10–500 unités).
- Flexibilité du matériau: Choose from resins, polyuréthane, and more to match the product’s needs (Par exemple, transparent resin for a lamp shade, soft PU for a toy).
- Revirement rapide: From prototype to product in 3–7 days—vs. 2–4 weeks for steel mold production.
5.2 Limitations à considérer
- Low Production Efficiency: Manual pouring and demolding limit output to 1–10 parts per hour—unsuitable for mass production (10,000+ unités).
- Mousser la vie: Les moules en silicone durent 20 à 50 cycles; les moules époxy durent 30 à 80 cycles. Pour les lots supérieurs 500 unités, steel molds become more cost-effective.
- Material Strength: Cast parts (Par exemple, résine) have 10–20% lower tensile strength than injection-molded parts. Par exemple, a resin phone case may crack under 50kg of force, while an injection-molded ABS case withstands 80kg.
6. Yigu Technology’s Perspective on Vacuum Duplicating Products
À la technologie Yigu, we’ve helped clients across industries leverage vacuum duplicating to reduce development time and costs—especially in medical and aerospace fields. A common mistake we address is overusing epoxy molds for complex parts: one client tried to make a silicone-like toy prototype with an epoxy mold, resulting in parts that broke during demolding. We switched to a flexible silicone mold, which let the toy’s undercuts release easily and reduced rework by 70%. Pour les pièces de haute précision (Par exemple, couronnes dentaires), we always recommend vacuum degassing for both the mold and casting material—this eliminates 95% des défauts de surface. Our key insight: Vacuum duplicating isn’t just a low-cost alternative to traditional manufacturing—it’s a tool for innovation, letting clients test more designs faster without risking expensive tooling. By aligning mold material with prototype complexity (silicone for curves, epoxy for flat parts), clients get consistent, high-quality products every time.
7. FAQ: Common Questions About Vacuum Duplicating Products
T1: Can I use vacuum duplicating to produce food-contact products (Par exemple, tasses en plastique)?
A1: Oui, but only with food-grade materials. Choisir food-safe silicone for the mold and FDA-approved casting materials (Par exemple, food-grade PU or epoxy). Test the final product for compliance (Par exemple, FDA 21 CFR 177.2600) to ensure no chemicals leach into food. Avoid standard resins—they may contain toxins.
T2: How do I fix bubbles in my vacuum duplicating product?
A2: Bubbles usually stem from incomplete vacuum degassing or fast pouring. Correctifs:
- Extend vacuum time by 1–2 minutes (ensure pressure reaches -0.1MPA).
- Pour the material slower (10–15ml per second) to avoid trapping air.
- Pour moules épais (>10mm), use layered pouring: fill 1/3 of the mold, degas, then add more material.
T3: What’s the maximum size of a vacuum duplicating product?
A3: It depends on your vacuum chamber size—standard chambers handle parts up to 600mm × 600mm × 600mm (Par exemple, a small TV back cover). Pour des pièces plus grandes (Par exemple, a car door panel), use sectional molds: create 2–3 smaller molds, produce sections of the product, then assemble them. This also reduces material waste and ensures full detail filling.