Coulée sous vide expliquée: Qu'est-ce que c'est, Comment ça marche, et sa valeur pour le prototypage (2025)

duplexage en silicone

Si vous êtes dans la conception de produits, ingénierie, ou fabrication en petites séries, vous avez probablement entendu le terme coulée sous vide. Mais qu'est-ce que cela signifie réellement? Est-ce le bon choix pour vos prototypes ou pièces en faible volume? Dans ce guide, nous allons expliquer exactement ce qu'est la coulée sous vide, parcourir son processus étape par étape, souligner ses principaux avantages, […]

Si vous êtes dans la conception de produits, ingénierie, ou fabrication en petites séries, you’ve probably heard the term coulée sous vide thrown around. Mais qu'est-ce que cela signifie réellement? Est-ce le bon choix pour vos prototypes ou pièces en faible volume?

Dans ce guide, nous allons expliquer exactement ce qu'est la coulée sous vide, parcourir son processus étape par étape, souligner ses principaux avantages, and share real-world examples. Our goal is to help you decide if this method fits your project’s needs—whether you’re testing a new product design or making 50–100 custom parts.

1. What Exactly Does Vacuum Casting Mean?

À la base, coulée sous vide (également appelé réplication sous vide) is a manufacturing process that uses a vacuum environment to produce high-precision prototypes or small batches of plastic parts. Unlike traditional methods like injection molding (which requires expensive, time-consuming metal molds), vacuum casting relies on flexible silicone molds to replicate details from a master prototype.

Here’s the key idea: By removing air from the process (via a vacuum), you eliminate bubbles in both the mold and the final part—ensuring crisp details, surfaces lisses, et une qualité constante. It’s most commonly used in the early stages of product design when you need to test complex designs quickly, without the cost or delay of traditional tooling.

Quick Fact: Vacuum casting is ideal for batches of 10–100 parts. Pour des volumes plus importants (500+), injection molding becomes more cost-effective—but vacuum casting shines for prototyping and small runs.

2. The Step-by-Step Vacuum Casting Process

Vacuum casting follows a straightforward, 4-step workflow. Each step is critical to achieving accurate, pièces de haute qualité. Let’s break them down with details (like time and materials) to make it actionable:

Étape 1: Create the Master Prototype

D'abord, you need a “template” (called a master prototype) that matches your desired final part. This prototype is made using precise methods like:

  • Usinage CNC: Idéal pour les rigides, pièces de haute précision (par ex., metal or hard plastic components).
  • SLA 3D printing: Perfect for complex shapes with fine details (par ex., intricate electronics housings).
  • Handcrafting: Rare today, but used for simple, low-precision parts (par ex., basic toy components).

Pro Tip: The master prototype must be clean and smooth—any scratches or dust will show up in the final parts. Wipe it with a lint-free cloth before moving to the next step.

Étape 2: Make the Silicone Mold (Under Vacuum)

Suivant, you create a flexible moule en silicone from the master prototype. Here’s how:

  1. Place the master prototype in a leak-proof mold frame (usually plastic or aluminum).
  2. Mix liquid silicone rubber (addition-cure silicone is best for low shrinkage, <1%) with a curing agent (typically a 10:1 ratio).
  3. Pour the silicone into the frame—inside a vacuum chamber (pression: -0.095MPa to -0.1MPa). The vacuum removes air bubbles that would ruin the mold’s details.
  4. Let the silicone cure. At room temperature (20–25°C), this takes 8–12 hours; with heat (30–35°C), it shortens to 4–6 hours.

Exemple: A startup making a smartwatch case used an SLA 3D-printed master prototype. They poured addition-cure silicone into a plastic frame, vacuumed it for 2 minutes, and cured it at 22°C overnight. The result was a mold that captured every detail of the watch’s buttons and texture.

Étape 3: Cast the Final Parts (Under Vacuum)

Once the silicone mold is cured, you remove the master prototype (the mold now has a cavity matching the prototype). Alors:

  1. Mix your chosen casting material (par ex., PU resin, ABS, or PC—more on this later).
  2. Pour the liquid material into the silicone mold—again, under vacuum (this prevents bubbles in the final part).
  3. Let the material cure. Curing time depends on the material:
  • PU resin: 2–4 hours at room temperature.
  • ABS: 4–6 heures (may need mild heat, 40–50°C).

Étape 4: Demold and Finish (Si nécessaire)

Enfin, gently peel the silicone mold away from the cured part. Most parts are ready to use immediately, but you can add small finishes like:

  • Ponçage: Smooth rough edges (use 400–600 grit sandpaper).
  • Peinture: Match brand colors (use spray paint designed for plastic).
  • Forage: Add small holes for screws or connectors.

3. Key Advantages of Vacuum Casting (contre. Traditional Methods)

Why choose vacuum casting over injection molding or 3D printing? Let’s compare it to two common alternatives using a table—with hard data to back up the benefits:

AvantageCoulée sous videMoulage par injection3D Impression (FDM/SLA)
CoûtFaible (\(500–)2,000 per mold)Haut (\(10,000–)50,000 per mold)Moyen (\(100–)500 par pièce)
Délai de mise en œuvreRapide (3–5 days total)Lent (2–4 weeks for mold)Très rapide (1–2 days per part)
Batch SizeIdeal for 10–100 partsIdéal pour 500+ partiesIdeal for 1–10 parts
PrécisionHaut (±0.1mm–±0.2mm)Very high (±0,05 mm)Moyen (±0.1mm–±0.3mm)
Detail CaptureExcellent (captures textures/logos)ExcellentBien (ANS) / Équitable (FDM)

Key Takeaway: Vacuum casting hits the “sweet spot” for prototyping and small batches—it’s cheaper than injection molding, more consistent than 3D printing for multiple parts, and fast enough to keep your design timeline on track.

4. Common Materials Used in Vacuum Casting

The choice of casting material depends on your part’s purpose (par ex., flexibilité, résistance à la chaleur). Here are the most popular options, with their uses and properties:

MatérielPropriétés clésIdéal pourExample Parts
PU ResinFlexible (Shore A 30–90), faible coûtLogements, poignées, soft componentsCoques de téléphone, télécommandes
ABSRigide, résistant aux chocsPièces structurelles, électroniqueCadres pour ordinateurs portables, composants de jouets
PC (Polycarbonate)Résistant à la chaleur (jusqu'à 130°C), transparentPièces haute température, clear componentsCouvertures légères, medical device parts
Pennsylvanie (Nylon)Résistant à l'usure, résistant aux produits chimiquesEngrenages, attachesPetits engrenages, screw holders

Pro Tip: For most prototypes, PU resin is the best starting point—it’s affordable, easy to work with, and comes in a range of flexibilities.

5. Real-World Case Study: Vacuum Casting in Action

Let’s look at how a small electronics company used vacuum casting to test a new wireless earbud design:

Project Goal

Créer 50 functional earbud prototypes to test fit, sound quality, and user comfort.

Processus

  1. Master Prototype: Used SLA 3D printing to make a detailed earbud prototype (included the speaker cavity and charging port).
  2. Moule en silicone: Poured addition-cure silicone into a mold frame, vacuumed for 2 minutes, cured at 22°C for 10 heures.
  3. Fonderie: Used flexible PU resin (Rive A 50) to pour 50 parts—vacuumed each pour to avoid bubbles, cured for 3 heures.
  4. Finition: Sanded small rough edges and added a matte paint to match the brand’s design.

Résultat

  • Tous 50 prototypes were consistent (no bubbles or defects).
  • The company tested the prototypes with 100 users—feedback led to a small tweak in the earbud’s shape.
  • Total cost: \(1,200 (contre. \)15,000 for an injection mold).
  • Time to finish: 4 jours (contre. 3 semaines pour le moulage par injection).

6. Yigu Technology’s Perspective on Vacuum Casting

Chez Yigu Technologie, we’ve supported over 400 clients (from startups to automotive brands) with vacuum casting projects. From our experience, vacuum casting is the most reliable method for turning prototype designs into physical parts quickly. We always recommend using addition-cure silicone for molds (it reduces shrinkage to <1%) and PU resin for most prototypes (it balances cost and performance). For clients needing high-heat parts, we suggest PC or PA materials. The biggest mistake we see? Skipping the vacuum step—this leads to bubbles and wasted parts. Vacuum casting isn’t just a “quick fix”; it’s a strategic tool to validate designs before investing in expensive production tooling.

7. (FAQ)

Q1: Can vacuum casting be used for metal parts?

No—vacuum casting is designed for plastic and resin parts. Pour les prototypes métalliques, you’ll need methods like investment casting or CNC machining. Cependant, you can use vacuum-cast parts as templates for metal casting (par ex., making a silicone mold of a plastic part to use in investment casting).

Q2: Combien de temps dure un moule en silicone en coulée sous vide?

A high-quality addition-cure silicone mold lasts 15–25 uses with proper care. To extend its life: clean it with warm water after each use, store it flat in a sealed bag, and avoid using harsh chemicals (par ex., strong solvents) that break down silicone.

Q3: Is vacuum casting accurate enough for medical devices?

Yes—if you use the right materials and process. Prototypes de dispositifs médicaux (par ex., syringe parts) often use PC or medical-grade PU resin, with vacuum casting achieving ±0.1mm accuracy. Just ensure the materials meet medical standards (par ex., OIN 10993 pour la biocompatibilité).

Indice
Faire défiler vers le haut