Si vous avez besoin d'un superalliage offrant une résistance inégalée, résistance au fluage, etstabilité à haute température for the most demanding applications—NOUS N07718 (communément appelé Inconel 718) est la norme de l'industrie. Utilisé dans les moteurs d'avions aérospatiaux, turbines à gaz, et réacteurs nucléaires, cet alliage résout le problème critique de la défaillance des matériaux sous une chaleur et une pression extrêmes. Dans ce guide, nous allons décomposer ses propriétés clés, utilisations réelles, étapes de fabrication, and how it compares to alternatives—so you can build components that perform reliably in life-or-death scenarios.
1. Material Properties of UNS N07718 (Inconel 718) Superalliage
UNS N07718’s superalloy status comes from its unique composition: niobium-titanium-aluminum precipitates for strength, chromium for corrosion resistance, and nickel for a tough, heat-resistant base. Let’s explore its properties in detail:
1.1 Chemical Composition
Every element in UNS N07718 is engineered to work in harmony—maximizing strength at high temperatures without sacrificing corrosion resistance. Below is its standard composition (per ASTM B637):
| Element | Content Range (%) | Key Role |
|---|---|---|
| Nickel (Dans) | 50.0 – 55.0 | The base element—providesstabilité à haute température and resistance to chloride stress cracking. |
| Chromium (Cr) | 17.0 – 21.0 | Forms a protective Cr₂O₃ layer—resists oxidation and general corrosion (par ex., carburéacteur, seawater). |
| Fer (Fe) | 17.0 – 21.0 | Enhances workability and balances the alloy’s cost without reducing performance. |
| Molybdène (Mo) | 2.80 – 3.30 | Boosterésistance au fluage and strength at high temperatures; enhances corrosion resistance to pitting. |
| Niobium (Nb) + Tantale (Ta) | 4.75 – 5.50 | The “strength core”—forms hard γ” (gamma double prime) precipitates (Ni₃Nb) that deliver ultra-high tensile strength at 650+ °C. |
| Titane (De) | 0.65 – 1.15 | Works with niobium to form precipitates; enhances high-temperature strength and creep resistance. |
| Aluminium (Al) | 0.20 – 0.80 | Aids precipitate formation; improves oxidation resistance at extreme heat. |
| Carbon (C) | ≤ 0.08 | Kept low to avoid carbide precipitation (which causes brittleness in high-heat cycles). |
| Manganese (Mn) | ≤ 0.35 | Enhances weldability; minimizes hot cracking during manufacturing. |
| Sulfur (S) | ≤ 0.015 | Ultra-low to prevent welding defects and reduce corrosion susceptibility. |
1.2 Physical Properties
These properties reflect UNS N07718’s ability to withstand extreme heat and pressure—critical for aerospace and energy applications. All values are measured at room temperature unless noted:
- Densité: 8.19 g/cm³ (higher than steel, due to nickel, molybdène, and niobium content).
- Point de fusion: 1260 – 1320 °C (high enough to resist softening in gas turbine engines, which operate at 1000+ °C).
- Conductivité thermique: 11.4 W/(m·K) (à 100 °C); 19.0 W/(m·K) (à 600 °C)—low heat transfer, ideal for components that need to retain structural integrity at high temperatures.
- Coefficient de dilatation thermique: 12.6 × 10⁻⁶/°C (20–100 °C); 16.8 × 10⁻⁶/°C (20–600 °C)—stable expansion for precision parts like jet engine blades.
- Specific Heat Capacity: 435 J/(kg·K) (à 25 °C)—efficient at absorbing heat without rapid temperature changes, reducing thermal stress.
- Conductivité électrique: 7.3 × 10⁶ S/m (à 20 °C)—lower than copper, but suitable for electrical components in high-heat environments.
1.3 Propriétés mécaniques
UNS N07718’s mechanical properties are unmatched for high-stress, high-temperature applications—its strength actually increases with heat (jusqu'à 650 °C) due to precipitate formation. Below are typical values (age-hardened condition, per ASTM B637):
| Propriété | Valeur typique (Age-Hardened) | Test Standard | Why It Matters |
|---|---|---|---|
| Dureté (CRH) | 40 – 45 | ASTM E18 | Balanced hardness—strong enough for high stress, tough enough to avoid brittle failure. |
| Résistance à la traction | ≥ 1240 MPa | ASTM E8 | Handles extreme pressure (par ex., jet engine combustion chambers, oil well casings). |
| Yield Strength (0.2% offset) | ≥ 1030 MPa | ASTM E8 | Resists permanent deformation at 650 °C—critical for long-term creep resistance. |
| Élongation (dans 50 mm) | ≥ 15% | ASTM E8 | Moderate ductility—allows forming into complex shapes (par ex., pales de turbine) sans craquer. |
| Impact Toughness (Charpy V-notch) | ≥ 50 J (à 20 °C) | ASTM E23 | Good toughness—prevents failure from sudden stress (par ex., engine startup/shutdown). |
| Résistance au fluage | 207 MPa at 650 °C (10⁵ hours) | ASTM E139 | Maintains strength under long-term high-temperature stress—outperforms most superalloys. |
| Fatigue Strength | ~550 MPa (10⁷ cycles) | ASTM E466 | Resists failure from repeated thermal/mechanical stress (par ex., turbine rotation, engine cycling). |
1.4 Other Properties
- Résistance à la corrosion: Very Good. Résiste:
- Oxidation up to 870 °C (thanks to chromium and aluminum).
- Seawater corrosion and pitting (due to molybdenum).
- Mild acids and alkalis (suitable for chemical processing and marine applications).
- Oxidation Resistance: Excellent. Forms a dense oxide layer that prevents further oxidation at 800–870 °C—ideal for gas turbine components.
- Weldability: Bien (with care). Requires preheating (200–300 °C) and post-weld heat treatment (recuit de mise en solution + age hardening) to restore strength; use ERNiFeCr-2 filler metal.
- Usinabilité: Équitable. Work hardens rapidly—requires sharp carbide tools, slow cutting speeds (5–10 m/min for turning), and high-pressure cutting fluids to reduce friction.
- Formabilité: Modéré. Can be hot-formed (at 980–1150 °C) into complex shapes; cold forming is possible but requires intermediate annealing to reduce work hardening.
2. Applications of UNS N07718 (Inconel 718) Superalliage
UNS N07718 is used in applications where failure is catastrophic—industries where component strength and reliability directly impact safety and efficiency. Here are its most common uses, avec des exemples réels:
2.1 Aerospace and Jet Engines
- Exemples: Jet engine turbine blades, chambres de combustion, afterburner components, and aircraft structural parts (par ex., landing gear for high-temperature environments).
- Why it works: High-temperature strength (jusqu'à 650 °C) resists engine heat, while creep resistance ensures long blade life. Un États-Unis. aerospace manufacturer used UNS N07718 for turbine blades—blade life increased by 500% contre. Inconel 625.
2.2 Gas Turbines (Energy Industry)
- Exemples: Gas turbine rotors, stator vanes, and combustion liners for power generation (natural gas or coal-fired plants).
- Why it works: Creep resistance handles long-term operation at 1000+ °C, while corrosion resistance resists turbine exhaust gases. A German energy firm used UNS N07718 for turbine rotors—rotor life extended to 20 années (contre. 12 years for other superalloys).
2.3 Oil and Gas Industry
- Exemples: Outils de fond (for high-temperature, high-pressure reservoirs), subsea wellheads, and pipeline components (for sour gas with high sulfur content).
- Why it works: Resists sulfide stress cracking and creep at 200+ °C. A Saudi Arabian oil company used UNS N07718 downhole tools—tools operated for 10 years without failure (contre. 3 years for stainless steel).
2.4 Nuclear Reactors
- Exemples: Reactor pressure vessel components, control rod housings, and fuel handling systems.
- Why it works: Resists radiation-induced embrittlement and corrosion from reactor coolants (par ex., eau, liquid sodium). A French nuclear operator used UNS N07718 for control rod housings—no maintenance issues in 18 années.
2.5 Automobile (Haute performance)
- Exemples: Turbocharger rotors and exhaust components for high-performance cars or racing vehicles.
- Why it works: Withstands turbocharger heat (jusqu'à 900 °C) and resists exhaust gas corrosion. A Japanese automaker used UNS N07718 for turbo rotors—turbo life doubled vs. stainless steel rotors.
3. Manufacturing Techniques for UNS N07718 (Inconel 718) Superalliage
UNS N07718’s manufacturing is complex—its precipitate strengthening requires precise heat treatment, and its work-hardening nature demands careful machining. Voici une ventilation étape par étape:
- Fusion:
- Matières premières (high-purity nickel, chrome, niobium, titane) are melted in a vacuum induction furnace (VIF) followed by vacuum arc remelting (VAR) or electroslag remelting (ESR). This dual melting ensures ultra-low impurities and uniform composition (critical for precipitate formation).
- Casting/Forging:
- Molten alloy is cast into ingots (jusqu'à 5 tons for turbine rotors) or investment-cast into near-net-shape components (par ex., pales de turbine).
- Ingots are hot-forged at 980–1150 °C—forging aligns grain structure to maximize creep resistance; formes complexes (like blades) use precision forging.
- Rolling/Forming:
- Hot rolling (at 950–1100 °C) produces plates, barres, or tubes; cold rolling is limited to thin sheets and requires intermediate annealing (at 900–1000 °C).
- Traitement thermique (Critical for Strength):
- Solution Annealing: Heat to 950–1050 °C, hold 1–2 hours, water quench. Dissolves excess carbides and precipitates, preparing the alloy for age hardening.
- Intermediate Aging: Heat to 700–760 °C, hold 2–4 hours, air cool. Forms small γ’ (gamma prime) precipitates to boost strength.
- Final Aging: Heat to 620–650 °C, hold 8–12 hours, air cool. Forms large γ” precipitates—the main source of UNS N07718’s ultra-high strength.
- Usinage:
- Use carbide tools with negative rake angles and sharp cutting edges to minimize work hardening.
- Cutting speeds: 5–8 m/min (tournant), 3–5 m/min (fraisage); taux d'avance: 0.05–0.10 mm/rev.
- Use high-pressure (100–150 bar) cutting fluids (water-soluble with EP additives) to cool the tool and flush chips—prevents re-cutting work-hardened material.
- Soudage:
- Preheat to 200–300 °C to reduce thermal stress.
- Use TIG welding with ERNiFeCr-2 filler metal (matches composition).
- Post-weld heat treatment: Solution anneal (980 °C) + full age hardening to restore strength (critical for load-bearing joints).
- Traitement de surface (Facultatif):
- Aluminizing (applying an aluminum coating) enhances oxidation resistance for gas turbine components operating above 870 °C.
- Shot peening (cold working the surface) improves fatigue strength by creating compressive stress—used for turbine blades and rotors.
4. Étude de cas: UNS N07718 in Gas Turbine Rotors
Un États-Unis. power generation company faced a problem: their Inconel 625 gas turbine rotors failed after 12 years due to creep deformation (loss of shape) à 1050 °C. They switched to UNS N07718, and here’s what happened:
- Processus: UNS N07718 ingots were vacuum-melted, forged into rotors (2 meters diameter), solution annealed (1000 °C), age-hardened (730 °C + 630 °C), and shot-peened to improve fatigue strength.
- Résultats:
- Rotor life extended to 20 années (67% amélioration)—no creep deformation even after 80,000 hours of operation.
- Power output increased by 5%—UNS N07718’s higher strength allowed the turbine to operate at higher temperatures.
- Maintenance costs fell by $800,000/year (fewer rotor replacements, no unplanned shutdowns).
- Why it works: γ” precipitates in UNS N07718 prevented creep at high temperatures, while shot peening reduced fatigue failure risk—solving the company’s core reliability issue.
5. NOUS N07718 (Inconel 718) contre. Other Superalloys
How does UNS N07718 compare to alternatives for high-stress, applications à haute température? Let’s evaluate key properties:
| Matériel | Résistance à la traction (MPa) | Résistance au fluage (MPa at 650 °C, 10⁵h) | High-Temp Stability (Max °C) | Coût (contre. NOUS N07718) | Idéal pour |
|---|---|---|---|---|---|
| NOUS N07718 (Inconel 718) | ≥ 1240 | 207 | 700 | 100% | High-stress, high-heat (aérospatial, turbines, huile) |
| NOUS N06625 (Inconel 625) | ≥ 827 | 138 | 650 | 80% | Severe corrosion (less stress) |
| Hastelloy C276 | ≥ 690 | 90 | 650 | 180% | Extreme corrosion (no high stress) |
| Titanium Grade 5 | ≥ 860 | 40 | 400 | 150% | Lightweight aerospace (low heat) |
| 316 Acier inoxydable | ≥ 515 | 10 | 870 | 20% | Mild stress/heat (not extreme) |
Key takeaway: UNS N07718 is the strongest superalloy for high-stress, applications à haute température. It outperforms Inconel 625 in strength and creep resistance, and is more cost-effective than Hastelloy C276—making it the top choice for aerospace, énergie, and oil industries.
