If you work with extreme high temperatures—like in aerospace engines or industrial furnaces—you need a material that stays strong and resists corrosion.UNS N06200 Hastelloy X is a nickel-based superalloy built for this. Il équilibre une résistance à la chaleur exceptionnelle et une durabilité, ce qui en fait un choix idéal pour les tâches exigeantes. Ce guide détaille ses principales propriétés, utilisations réelles, and how it compares to other materials—so you can pick the right solution for your project.
1. Material Properties of UNS N06200 Hastelloy X
Hastelloy X’s performance comes from its carefully blended composition and robust characteristics. Let’s explore each property clearly.
1.1 Composition chimique
Every element works together to boost heat resistance and strength. Below is its typical composition (by weight):
| Élément | Gamme de contenu (%) | Key Role |
|---|---|---|
| Nickel (Dans) | 47–50 | Base metal—provides high-temperature stability and ductility |
| Chrome (Cr) | 18–22 | Enhances oxidation resistance (critical for furnace and engine parts) |
| Molybdène (Mo) | 8–10 | Boosts strength and corrosion resistance in high-heat environments |
| Fer (Fe) | 17–20 | Adds structural strength and reduces material cost |
| Cobalt (Co) | 0.5–2.5 | Improves creep resistance (stops deformation under long-term heat) |
| Tungsten (W) | 0.2–1.0 | Enhances high-temperature hardness and wear resistance |
| Carbone (C) | 0.05–0.15 | Strengthens the alloy without sacrificing ductility |
| Manganèse (Mn) | Max 1.0 | Aids in manufacturing (par ex., welding and casting) |
| Silicium (Et) | Max 1.0 | Reduces oxidation at extreme temperatures |
| Soufre (S) | Max 0.015 | Kept low to prevent brittleness in high-heat conditions |
| Aluminium (Al) | Max 0.5 | Enhances oxidation resistance (works with chromium) |
| Titane (De) | Max 0.15 | Stabilizes the alloy and prevents intergranular corrosion |
1.2 Propriétés physiques
These traits make Hastelloy X ideal for high-temperature design:
- Densité: 8.3 g/cm³ (heavier than aluminum, lighter than some other superalloys)
- Point de fusion: 1290–1350°C (2350–2460°F) – handles extreme heat in engines and furnaces
- Conductivité thermique: 13.5 Avec(m·K) at 20°C (68°F); 23.0 Avec(m·K) at 800°C – efficient heat transfer
- Thermal Expansion Coefficient: 13.5 μm/(m·K) (20–100°C); 17.8 μm/(m·K) (20–800°C) – manageable expansion in heat cycles
- Electrical Resistivity: 130 Ω·mm²/m at 20°C – suitable for electrical components in high-heat areas
- Propriétés magnétiques: Non-magnetic – great for aerospace and electronic equipment where magnetism is a problem
1.3 Propriétés mécaniques
Hastelloy X stays strong even at high temperatures. All values below are for the annealed (traité thermiquement) version:
| Propriété | Valeur (Room Temperature) | Value at 800°C |
|---|---|---|
| Résistance à la traction | Min 700 MPa (102 ksi) | 420 MPa (61 ksi) |
| Limite d'élasticité | Min 350 MPa (51 ksi) | 280 MPa (41 ksi) |
| Élongation | Min 30% (dans 50 mm) | 35% (dans 50 mm) |
| Dureté | Max 220 HB (Brinell) | N / A |
| Résistance à la fatigue | 280 MPa (10⁷ cycles) | 180 MPa (10⁷ cycles) |
| Résistance au fluage | Maintains strength up to 1090°C (2000°F) | – |
1.4 Autres propriétés
- Résistance à la corrosion: Excellent in oxidizing environments (par ex., air, vapeur) and mild acids – outperforms stainless steel at high temps.
- Oxidation Resistance: Resists scaling in air up to 1090°C (2000°F) for long periods – ideal for furnace liners.
- Stress Corrosion Cracking (SCC) Resistance: Resists SCC in chloride-rich solutions (a common issue for 316 acier inoxydable).
- Pitting Resistance: Good resistance to pitting in salty or acidic brines (suitable for marine and chemical applications).
- Hot/Cold Working Properties: Easy to hot forge (at 1150–1250°C) – cold working is possible but may require annealing to restore ductility.
2. Applications of UNS N06200 Hastelloy X
Hastelloy X’s high-temperature performance makes it perfect for tough industries. Voici ses utilisations les plus courantes, avec des exemples concrets:
2.1 Composants aérospatiaux
- Use Case: Un États-Unis. aerospace company uses Hastelloy X for jet engine exhaust systems. The parts handle 950°C temperatures—they’ve lasted 8 années, par rapport à 4 years for Inconel 625 parties.
- Other Uses: Combustion chambers, pales de turbine, and afterburner components.
2.2 Heat Treatment Equipment
- Use Case: A metal processing plant in Germany uses Hastelloy X for furnace heating elements. The elements operate at 1000°C daily—they’ve run for 5 années, contre. 2 years for stainless steel elements.
- Other Uses: Furnace liners, annealing baskets, and heat exchanger tubes.
2.3 Oil and Gas Industry
- Use Case: An offshore oil rig in the North Sea uses Hastelloy X for wellhead valves. The alloy resists high-pressure natural gas and 600°C temperatures, réduisant les coûts de maintenance en 35%.
2.4 Chemical Processing Equipment
- Use Case: A chemical plant in China uses Hastelloy X for high-temperature reactor vessels. The vessels handle 750°C processes—they’ve lasted 6 années, par rapport à 3 years for carbon steel vessels.
2.5 Nuclear Industry
- Use Case: A nuclear power plant in France uses Hastelloy X for coolant system parts. The alloy resists corrosion from radioactive coolants, ensuring long-term safety.
3. Manufacturing Techniques for UNS N06200 Hastelloy X
To get the best performance from Hastelloy X, manufacturers use these specialized methods:
- Fonderie: Investment casting (using a wax mold) is ideal for complex shapes (par ex., engine combustion chambers). The alloy’s low sulfur content prevents defects during casting.
- Forgeage: Hot forging (at 1150–1250°C) shapes the alloy into strong parts like turbine blades. Forging improves grain structure, boosting high-temperature strength.
- Soudage: Gas Tungsten Arc Welding (GTAW) is recommended. Use matching filler metals (par ex., ERNiCrMo-10) to maintain corrosion resistance. Pre-weld cleaning (to remove oils) is critical for strong welds.
- Usinage: Utiliser des outils en carbure (they stay sharp longer). Add coolant (par ex., mineral oil) to prevent overheating—Hastelloy X can work-harden if cut too quickly.
- Traitement thermique:
- Recuit: Heat to 1050–1100°C, cool rapidly (air or water) – softens the alloy for forming and restores ductility.
- Stress Relieving: Heat to 760–815°C, cool slowly – reduces internal stresses after welding or cold working.
- Traitement de surface: Passivation (using nitric acid) enhances pitting resistance. No painting is needed— the alloy’s natural surface resists rust in most environments.
4. Étude de cas: Hastelloy X in an Aerospace Combustion Chamber
An aerospace manufacturer in the UK needed to upgrade combustion chambers for a new jet engine. The old chambers (made of Inconel 625) failed after 3000 flight hours due to heat fatigue at 980°C.
They switched to Hastelloy X chambers. Here’s the result:
- Lifespan: The chambers have lasted 6000 flight hours with no signs of wear.
- Économies de coûts: Replacement costs dropped by 50% (fewer frequent part changes).
- Performance: The alloy’s heat resistance improved engine efficiency by 8%, réduire la consommation de carburant.
This case proves why Hastelloy X is the top choice for high-temperature aerospace parts.
5. Comparative with Other Materials
How does UNS N06200 Hastelloy X stack up against other common materials? The table below compares key properties:
| Matériel | Max Service Temp (°C) | Résistance à la traction (MPa) | Résistance à la corrosion (High Temps) | Coût (Relative) |
|---|---|---|---|---|
| Hastelloy X | 1090 | 700 | Excellent | Haut |
| Acier inoxydable 316 | 870 | 515 | Bien | Faible |
| Titanium Alloy Ti-6Al-4V | 400 | 860 | Very Good | Très élevé |
| Inconel 625 | 980 | 930 | Excellent | Haut |
| Hastelloy C22 | 650 | 690 | Excellent (acides) | Haut |
| Monel 400 | 480 | 550 | Bien (seawater) | Moyen |
| Acier au carbone | 425 | 400 | Pauvre | Très faible |
Key Takeaways:
- Hastelloy X outperforms stainless steel and Monel 400 in high-temperature resistance.
- It’s more affordable than titanium alloys and offers better heat resistance than Hastelloy C22.
- Inconel 625 has higher tensile strength, but Hastelloy X works at higher temperatures (up to 1090°C).
Yigu Technology’s Perspective
Chez Yigu Technologie, we recommend UNS N06200 Hastelloy X for clients in aerospace, traitement thermique, and oil industries. Its exceptional high-temperature strength and corrosion resistance make it a reliable, long-lasting solution. Our team provides custom machining and heat treatment for Hastelloy X components, ensuring they meet strict industry standards. For projects needing durability in extreme heat, Hastelloy X delivers unmatched value.
FAQ
1. Can UNS N06200 Hastelloy X handle temperatures above 1000°C?
Oui! It’s designed for this—it maintains strength up to 1090°C (2000°F) in air. This makes it ideal for jet engine parts, furnace liners, and other high-heat applications.
2. Is Hastelloy X suitable for marine environments?
Absolument. Its goodpitting resistance and corrosion protection in salty water make it ideal for marine parts like offshore wellhead valves—outperforming stainless steel in long-term use.
3. What’s the typical lifespan of Hastelloy X parts in aerospace applications?
In aerospace components (par ex., jet engine exhausts), Hastelloy X parts last 6–10 years or 6000+ flight hours—2x longer than Inconel 625 parties. Proper maintenance (par ex., recuit) can extend this lifespan even further.
