Ultra High Carbon Steel: Propriétés, Usages, Manufacturing for Industrial Applications

Pièces métalliques Fabrication personnalisées

If you work in industries like tooling, exploitation minière, ou agriculture, you know the value of materials that stand up to extreme wear and high stress.Ultra high carbon steel (UHCS)—defined by itscarbone élevé (C) contenu (1.0–2.1% by weight)—delivers unmatched hardness and strength for tough tasks. Ce guide décompose ses traits clés, Utilise du monde réel, Comment c'est fait, and how it compares to other steels—so you can pick the right material for high-wear, high-strength needs.

1. Core Material Properties of Ultra High Carbon Steel

Ultra high carbon steel’s unique performance comes from its chemical makeup and resulting physical/mechanical traits. Faisons-les clairement en panne:

1.1 Composition chimique

The high carbon content is the star here, but alloying elements fine-tune its properties:

  • Carbone élevé (C): 1.0–2.1% (the main driver of its ultra-high hardness and strength).
  • Manganèse (MN): 0.30–1,00% (améliore la durabilité et réduit la fragilité).
  • Silicium (Et): 0.15–0,35% (boosts strength and resistance to oxidation during heat treatment).
  • Éléments d'alliage: Petites quantités de Chrome (Croisement) (0.50–1,50%) pour la résistance à l'usure; Molybdène (MO) (0.20–0,50%) Pour une résistance à haute température; Vanadium (V) (0.10–0,20%) for fine-grain structure (améliore la ténacité).
  • Harmful impurities: Phosphore (P) (<=0.025%) et Soufre (S) (<=0.015%) are minimized to avoid cracking and brittleness.

1.2 Propriétés physiques

Ultra high carbon steel’s physical traits reflect its dense, strong structure:

PropriétéValeur typique
Densité7.87 g / cm³
Point de fusion1420–1480 ° C
Conductivité thermique40 Avec(m · k)
Coefficient de dilatation thermique12.5 × 10⁻⁶ / ° C (20–100 ° C)
Résistivité électrique0.22 μΩ · m

1.3 Propriétés mécaniques

This is where ultra high carbon steel dominates—its strength and hardness are ideal for high-wear tasks:

  • Résistance à la traction ultra-élevée: 1,500–2 500 MPA (far higher than low carbon steel’s 400 MPA).
  • Haute limite: 1,200–2 000 MPa (resists permanent deformation under extreme loads).
  • Dureté élevée: 55–65 HRC (on the Rockwell scale—hard enough to cut through other metals).
  • Ténacité à fort impact: 15–30 J (good for tools that take occasional shocks, comme des marteaux).
  • Faible ductilité & low elongation: 2–5% elongation (can’t bend much without breaking—trade-off for hardness).
  • Résistance à la fatigue élevée: Résiste au stress répété (ideal for rotating parts like grinding balls).
  • High fracture toughness: Resists sudden cracking (critical for mining equipment).

1.4 Autres propriétés clés

  • Excellente résistance à l'usure: The high carbon content forms hard carbides, making it last 3–5x longer than low carbon steel in wear-heavy tasks.
  • Bonne résistance à la corrosion: Alloying elements like Cr protect against rust (better than low carbon steel, but not as good as stainless steel).
  • Résistance à haute température: Maintains hardness up to 500°C (useful for hot work tools like forging dies).
  • Poor weldability: High carbon content causes cracking during welding (needs pre-heating and post-heating—often avoided for welded parts).
  • Poor formability: Can’t be bent or stamped easily (usually shaped via forging or grinding).

2. Real-World Applications of Ultra High Carbon Steel

Ultra high carbon steel’s hardness and wear resistance make it a top choice for tools and parts that face extreme stress. Voici ses utilisations les plus courantes, backed by case studies:

2.1 Outils de coupe

Its high hardness makes it perfect for cutting other materials:

  • Frappeurs, forets, and lathe tools: Used to machine metal parts. Étude de cas: A manufacturing plant switched to ultra high carbon steel drills for aluminum machining—drill lifespan increased by 400% contre. low carbon steel drills.
  • Hand tools: Marteaux, ciseaux, and axes (the steel’s hardness keeps edges sharp longer).

2.2 Moules et matrices

For shaping other materials under pressure:

  • Outils de travail à froid: Punch dies and stamping dies (used for bending metal sheets). Étude de cas: A automotive parts maker used ultra high carbon steel cold dies for sheet metal stamping—die maintenance frequency dropped by 70%.
  • Outils de travail à chaud: Forging dies and extrusion dies (handles high heat and pressure). Étude de cas: A forging shop used ultra high carbon steel dies for steel bar forging—die replacement intervals extended from 2 des semaines pour 2 mois.

2.3 Machines agricoles

Tough enough for rough farm work:

  • Plowshares and harrows: Cut through soil and rocks without wearing down. Étude de cas: A farm equipment manufacturer used ultra high carbon steel plowshares—share lifespan doubled vs. acier standard, reducing farmer replacement costs.

2.4 Exploitation minière et fouille

For equipment that grinds or crushes hard materials:

  • Broyeurs de roche, boules de broyage, and grinding rods: Used to break down ore. Étude de cas: A gold mine switched to ultra high carbon steel grinding balls—grinding efficiency improved by 25%, and ball replacement costs dropped by 60%.
  • Excavator teeth: Resist wear from dirt and rocks (last 3x longer than low carbon steel teeth).

2.5 Marin

For parts that need strength and corrosion resistance:

  • Hélices de navire: Withstands saltwater wear and high torque. Étude de cas: A shipyard used ultra high carbon steel propellers for cargo ships—propeller maintenance costs fell by 30% contre. standard steel propellers.
  • Structures marines: Mooring chains and anchor parts (resist rust and impact from waves).

3. Manufacturing Techniques for Ultra High Carbon Steel

Making ultra high carbon steel requires precise processes to balance hardness and avoid brittleness. Voici comment il est produit:

3.1 Processus d'acier

Two main methods create the base steel:

  • Fournaise à arc électrique (EAF): Most common for ultra high carbon steel. Uses scrap steel, adds carbon (via coal or graphite), et des éléments d'alliage (Croisement, MO) to reach the desired composition. Ideal for small to medium batches.
  • Fournaise de base à l'oxygène (BOF): Rarely used for ultra high carbon steel—BOF typically produces low to medium carbon steel. Only used for large-scale production when scrap is scarce.

3.2 Traitement thermique

Heat treatment is critical to unlocking its hardness and toughness:

  • Trempage et tempérament: L'étape la plus importante. Steel is heated to 800–900°C (to dissolve carbon), éteint dans l'huile (to lock in hardness), then tempered at 200–400°C (réduit la fragilité tout en gardant la dureté). This gives it the 55–65 HRC hardness range.
  • Recuit: Heats to 700–800°C, refroidie lentement. Softens the steel temporarily (to make it easier to machine or grind), then quenched later to restore hardness.
  • Normalisation: Heats to 900–950°C, air-cools. Improves uniformity in the steel’s structure (prepares it for quenching).
  • Carburisant: Adds more carbon to the surface (for parts that need extra surface hardness, comme des engrenages).
  • Nitrative: Adds nitrogen to the surface (boosts wear resistance and corrosion resistance—used for cutting tools).

3.3 Formation de processus

Due to its poor formability, ultra high carbon steel is shaped via:

  • Roulement chaud: Heated to 1100–1200°C, rolled into bars or plates (the only way to shape it while soft).
  • Forgeage: Marteaux ou presse l'acier chauffé en formes complexes (used for dies and tool heads).
  • Roulement froid: Rarely used—only for thin sheets, and requires high pressure (risk of cracking).
  • Extrusion & estampillage: Almost never used (poor formability causes breaking).

3.4 Traitement de surface

To boost performance and durability:

  • Placage: Chromium plating adds extra wear resistance (used for cutting tools and dies).
  • Revêtement: Nitrure de titane (Étain) revêtement (gold color) reduces friction and wear (common on drills and milling cutters).
  • Coup de feu: Blasts the surface with small metal balls—reduces stress and improves fatigue resistance (used for grinding balls).
  • Polissage: Smooths the surface (reduces friction for moving parts like propellers).

4. How Ultra High Carbon Steel Compares to Other Materials

Choisir le bon matériau dépend de vos besoins (dureté, coût, Formabilité). Here’s how ultra high carbon steel stacks up:

MatérielDureté (HRC)Résistance à la traction (MPA)Se résistance à l'usureSoudabilitéCoût (contre. Ultra High Carbon Steel)Mieux pour
Ultra High Carbon Steel55–651,500–2,500ExcellentPauvre100%Outils de coupe, boules de broyage
Acier à faible teneur en carbone15–25300–500PauvreExcellent50%Pièces soudées, tuyaux
Acier HSLA30–40600–1,000BienBien80%Ponts, cadres de véhicules
Acier inoxydable (304)25–35500–700BienExcellent300%Équipement alimentaire, outils médicaux
Outils (H13)50–551,200–1,800Très bienÉquitable150%Le travail chaud meurt

Principaux à retenir:

  • contre. Acier à faible teneur en carbone: Ultra high carbon steel is 3–4x harder and 4x stronger—worth the extra cost for high-wear tasks.
  • contre. Acier HSLA: Ultra high carbon steel is harder (55–65 HRC vs. 30–40 HRC) but less formable—use HSLA for structural parts, UHCS for tools.
  • contre. Acier inoxydable: Ultra high carbon steel is harder and 67% cheaper—use stainless steel only if corrosion resistance is critical.
  • contre. Outils: Ultra high carbon steel is harder (55–65 HRC vs. 50–55 HRC) but less tough—better for light-wear tools like drills.

5. Yigu Technology’s Perspective on Ultra High Carbon Steel

À la technologie Yigu, we recommend ultra high carbon steel for clients needing extreme wear resistance and hardness. Its 55–65 HRC hardness and 1,500+ MPa tensile strength make it irreplaceable for cutting tools and mining equipment—we’ve seen clients cut replacement costs by 50%+ after switching from standard steel. While its poor weldability and formability limit use cases, we help clients design around these traits (Par exemple, using forging instead of stamping). For high-wear industrial tasks where durability is non-negotiable, ultra high carbon steel remains a top material choice.

FAQ About Ultra High Carbon Steel

1. Can ultra high carbon steel be welded?

Ça peut, but it’s not easy. Its high carbon content causes cracking, so you need pre-heating (à 200–300 ° C) et post-chauffage (to relieve stress). Pour la plupart des projets, we recommend avoiding welding—use bolted or riveted connections instead.

2. How long does ultra high carbon steel last in wear-heavy tasks?

Cela dépend de l'application, but it typically lasts 3–5x longer than low carbon steel. Par exemple, grinding balls in mines last 6–12 months vs. 1–2 months for standard steel balls.

3. Is ultra high carbon steel more expensive than other steels?

Oui, but it’s cost-effective for high-wear tasks. It’s 2x more expensive than low carbon steel but lasts 4x longer—so total ownership cost is lower. It’s also cheaper than stainless steel (67% moins) et acier à outils (33% moins) in most cases.

Faites défiler en haut