If you’re in conception de produits, fabrication industrielle, ou approvisionnement, compréhension fabrication de tôle is key to creating durable, pièces économiques. Des boîtiers électroniques aux composants automobiles, ce processus transforme les tôles plates en structures 3D fonctionnelles et choisit les bons matériaux, méthodes, et les finitions peuvent faire ou défaire votre projet. Ce guide détaille tout ce que vous devez savoir, including material selection (using Xometry’s trusted options), core processes, et applications du monde réel, to help you make informed decisions.
What Is Sheet Metal Fabrication?
Sheet metal fabrication is a set of manufacturing techniques that shape flat metal sheets (typically 0.15mm–10mm thick) into finished parts or assemblies. Contrairement au casting (which melts metal) ou impression 3D (which builds layer-by-layer with plastic), fabrication works with pre-flattened metals—making it fast, évolutif, and ideal for both small prototypes and large production runs.
The process relies on three core steps: coupe (shaping the flat sheet), formation (bending into 3D shapes), et assemblée (joining parts). What makes it stand out? It balances precision with affordability—you can create custom brackets, complex enclosures, or simple panels without sacrificing quality.
Core Processes of Sheet Metal Fabrication
Turning a flat metal sheet into a usable part requires a sequence of specialized steps. Each process uses tools to ensure accuracy, and the order rarely changes. Let’s break them down with real-world examples.
1. Coupe: Shaping the Metal to Size
The first step is cutting the flat metal sheet into the basic outline of your part. For precision, most shops use CNC (Commande numérique par ordinateur) technologies—these automate the process, reducing errors. Here are the four most common cutting methods:
| Cutting Method | Comment ça marche | Ideal Materials | Key Specs |
| Découpe Laser | Uses a high-powered laser to melt or vaporize metal. No physical contact. | Aluminium, acier inoxydable, cuivre | Tolérance: ±0,1mm; Max thickness: 15mm (aluminium), 6mm (acier) |
| Découpe au jet d'eau | Uses a high-pressure water stream (with abrasives) to slice through metal. | Tous les métaux (even thick steel), bois, mousse | Tolérance: 0.05mm–0.1mm; No heat damage to material |
| Découpe Plasma | Blasts super-hot plasma (ionized gas) to melt conductive metals. | Acier, aluminium, cuivre | Max thickness: 300mm (acier); Fast for thick materials |
| Tonte | Uses a sharp blade to cut straight lines (like a paper cutter for metal). | Thin steel, feuilles d'aluminium | Best for simple shapes; Low cost for high-volume straight cuts |
Real-World Example: A tech company needs 500 aluminium fin (Alliage 6082) boîtiers électroniques. They choose découpe laser—it delivers precise, clean edges (tolerance ±0.1mm) that fit circuit boards perfectly, and the process is fast enough to meet their 2-week deadline.
2. Formation: Bending Metal into 3D Shapes
Once cut, the metal sheet is bent or shaped into 3D forms. The most common method is CNC press braking, which uses hydraulic force to bend metal at precise angles. Voici comment ça marche:
- The flat metal sheet is clamped onto a press brake’s bed.
- A custom-shaped punch (attached to the upper beam) presses down on the metal, bending it over a die (on the bed).
- The angle is controlled by the punch’s depth—common angles are 90° (pour supports) or 45° (for frames).
Other forming methods include:
- Roulement: Curves metal into cylinders (par ex., Conduits CVC) using a series of rollers.
- Estampillage: Uses dies to press patterns or holes into metal (par ex., decorative grilles for appliances).
- Deep Drawing: Stretches metal into hollow shapes (par ex., aluminum cans or fuel tanks).
Étude de cas: A furniture maker bends 1mm-thick cold-rolled steel (SPCC) into 90° angles to create chair frames. The CNC press brake ensures every leg has the exact same bend—so the chairs don’t wobble, and assembly is quick.
3. Assemblée: Joining Parts Together
The final step is assembling cut and formed parts into a finished product. This uses methods that create strong, permanent joins. Here are the most common techniques:
| Assembly Method | Comment ça marche | Idéal pour |
| Soudage | Uses heat to melt and fuse metal parts (par ex., MIG welding for steel). | Heavy-duty parts (car chassis, bâtis de machines) |
| Rivetage | Uses metal fasteners (rivets) to clamp parts together. No heat required. | Pièces aérospatiales (avoids weakening metal) |
| Brazing | Uses a low-temperature metal alloy to join parts (lower heat than welding). | Delicate parts (composants électroniques) |
| Adhésifs | Industrial glue for parts that can’t be welded/riveted (par ex., aluminium + plastique). | Lightweight assemblies (dispositifs médicaux) |
Exemple: A marine equipment manufacturer assembles stainless steel (SUS 304) boat railings by welding. SUS 304’s corrosion resistance paired with strong welds ensures the railings withstand saltwater for years.
Sheet Metal Fabrication Materials: A Detailed Selection Guide
Choosing the right material is critical—each metal has unique properties that affect strength, résistance à la corrosion, et le coût. Below is a curated list of top materials (from Xometry’s selection) with their uses, specs, and ideal applications.
1. Aluminum and Aluminum Alloys
Aluminum is lightweight, résistant à la corrosion, and easy to form—making it one of the most popular choices for sheet metal fabrication.
| Qualité du matériau | Propriétés clés | Résistance à la traction | Applications idéales |
| Aluminum 1050P/1100P | Pure aluminum (99%+ pureté); doux, easy to cut/bend; poor strength. | 70–110 MPa | Pièces décoratives, signes, lightweight panels |
| Alliage d'aluminium 5052 | Medium strength; excellente résistance à la corrosion (même en eau salée); weldable. | 230–270 MPa | Composants marins, réservoirs de carburant, boîtiers électroniques |
| Alliage d'aluminium 5083 | Haute résistance; bonne usinabilité; risk of stress corrosion above 70°C. | 310–350 MPa | Offshore construction, coques de navires, machinerie lourde |
| Alliage d'aluminium 6082 | Léger; great weldability/thermal conductivity; high stress corrosion resistance. | 140–330 MPa | Containers, offshore structures, cadres de vélo |
Tip: For parts that need both strength and corrosion resistance (par ex., mobilier d'extérieur), choose Alliage 5052. For lightweight, weldable parts (par ex., cadres de vélo), Alliage 6082 c'est mieux.
2. Acier
Steel is strong, abordable, and versatile—ideal for heavy-duty or high-volume parts.
| Qualité du matériau | Propriétés clés | Coating Type | Applications idéales |
| Q235 | Low carbon steel; easy to weld/cut; faible résistance. | Uncoated | Pièces structurelles (poutres, parenthèses), simple frames |
| Q345 | Medium carbon steel; higher strength than Q235; bonne résistance aux chocs. | Uncoated | Engins de chantier, châssis automobile |
| SECC (Electrolytic Galvanized) | Cold-rolled steel with zinc coating; résistant à la rouille; good for painting. | Zinc (electrolytic) | Boîtiers électroniques, computer cases |
| SPCC (Laminé à froid) | Surface lisse; easy to stamp/bend; needs painting to prevent rust. | Uncoated | Pièces d'appareils (panneaux de machine à laver), meubles |
| SGCC (Hot-Dipped Galvanized) | Thick zinc coating; excellente résistance à la corrosion; durable. | Zinc (hot-dipped) | Outdoor structures (fences, Conduits CVC) |
3. Acier inoxydable
Stainless steel resists rust and staining—perfect for parts exposed to moisture or chemicals.
| Qualité du matériau | Propriétés clés | Applications idéales |
| SUS 301 | Haute résistance; good ductility; withstands high temperatures. | Pièces aérospatiales, ressorts, high-pressure components |
| SUS 304 | Most common; excellente résistance à la corrosion; facile à souder. | Équipement de transformation des aliments, outils médicaux, pièces marines |
| SUS 303 | Facile à usiner (adds sulfur); lower corrosion resistance than 304. | Threaded parts (boulons, noix), vannes |
| SUS 316L | Résistance supérieure à la corrosion (resists saltwater/chemicals); biocompatible. | Instruments chirurgicaux, offshore oil rig parts, matériel marin |
4. Copper and Copper Alloys
Copper is highly conductive—great for electrical or decorative parts.
| Qualité du matériau | Propriétés clés | Applications idéales |
| H62 Copper | 62% cuivre, 38% zinc; bonne usinabilité; force modérée. | Connecteurs électriques, plumbing parts, objets de décoration |
| Zinc Cupronickel | Cuivre + zinc + nickel; résistant à la corrosion; good for marine use. | Boat propellers, échangeurs de chaleur |
| Extra-Cupronickel | High nickel content; excellent resistance to seawater; durable. | Marine pipes, desalination equipment |
Post-traitement: Finishing Sheet Metal Parts
After fabrication, most parts need post-processing to improve appearance, durabilité, ou fonctionnalité. Here are the most common finishes:
- Anodisation: Crée une couche d'oxyde protectrice sur l'aluminium. Ajoute de la couleur (noir, argent, or) and boosts corrosion resistance. Ideal for electronics enclosures or outdoor parts.
- Revêtement en poudre: Sprays a dry powder onto metal, then bakes it to form a hard, finition résistante aux rayures. Disponible en 1000+ colors—great for furniture or appliances.
- Peinture: Uses liquid paint for a smooth finish. Cheaper than powder coating but less durable. Best for indoor parts (par ex., office desk frames).
- Galvanoplastie: Coats metal with a thin layer of another metal (chrome, nickel, zinc) to prevent rust or add shine. Used for decorative parts (par ex., faucet handles).
- Ébavurage: Élimine les arêtes vives ou les bavures des pièces coupées. Critical for safety (par ex., hand tools) or parts that need a smooth fit (par ex., engrenages).
Utilisation dans le monde réel: A company making outdoor grills uses revêtement en poudre on SGCC steel frames. The finish resists rain and UV rays, so the grills don’t fade or rust for 5+ années.
Key Advantages of Sheet Metal Fabrication
Why choose sheet metal fabrication over other methods like 3D printing or casting? Here are its biggest benefits:
- Durabilité: Fabricated parts are made from solid metal—they last longer than plastic or 3D-printed parts. Par exemple, a sheet metal bracket can withstand 10x more weight than a 3D-printed plastic one.
- Évolutivité: Que vous ayez besoin 1 prototype ou 100,000 parties, fabrication scales easily. CNC machines repeat processes with zero variation, so every part is identical.
- Rentabilité: Pour les tirages à gros volume, fabrication is cheaper than 3D printing. Making 1,000 steel brackets via fabrication costs ~50% less than 3D printing them.
- Polyvalence des matériaux: You can use aluminum, acier, acier inoxydable, or copper—each tailored to your part’s needs (par ex., lightweight aluminum for drones, rust-resistant stainless steel for medical tools).
- Délai d'exécution rapide: Pièces simples (like brackets) can go from design to finished product in 1–2 days, faster than casting (which takes 1–2 weeks).
Industries That Rely on Sheet Metal Fabrication
Sheet metal fabrication is used across almost every industry. Here are the top sectors and their common applications:
| Industrie | Common Fabricated Parts |
| Électronique | Boîtiers (computer cases, TV frames), circuit board brackets, dissipateurs de chaleur |
| Automobile | Pièces de châssis, panneaux de porte, supports de moteur, composants d'échappement |
| Médical | Surgical tool trays, MRI machine frames, wheelchair frames (acier inoxydable) |
| Construction | Conduits CVC, roof panels, supports structurels, elevator parts |
| Aérospatial | Lightweight aluminum components, attaches en acier inoxydable, fuel tank parts |
| Meubles | Cadres de chaises, table legs, quincaillerie d'armoire (powder-coated steel) |
Yigu Technology’s Take on Sheet Metal Fabrication
Chez Yigu Technologie, we see sheet metal fabrication as a cornerstone of reliable manufacturing. For clients prioritizing lightweight, corrosion-resistant parts (like electronics or marine equipment), we recommend aluminum alloys 5052 ou 6082. For heavy-duty industrial parts, Q345 steel or SUS 304 stainless steel delivers strength and durability. We also help clients optimize processes—e.g., using laser cutting for precision parts and powder coating for long-lasting finishes. Our goal is to match your project’s needs to the right materials and methods, ensuring cost-effectiveness without compromising quality.
FAQ:
1. What’s the minimum thickness of sheet metal I can use for fabrication?
Most shops work with sheet metal as thin as 0.15mm (par ex., aluminum for electronics) and as thick as 10mm (par ex., steel for machinery). For parts that need flexibility (par ex., ressorts), choose thin materials (0.15mm–0.5mm); pour la force (par ex., parenthèses), go with 1mm–5mm thickness.
2. Can sheet metal fabrication create complex shapes like hollow parts or curves?
Oui! Hollow parts are made by cutting flat sheets, bending them into a box shape, and welding the seams. Curved parts use rolling (for cylinders) or press braking (for gentle bends). Par exemple, HVAC ducts are curved using rolling, while motorcycle fuel tanks use deep drawing for complex hollow shapes.
3. How do I choose between aluminum and stainless steel for my project?
Choose aluminum if weight and corrosion resistance matter (par ex., mobilier d'extérieur, électronique)—it’s lighter and cheaper than stainless steel. Choose stainless steel (SUS 304/SUS 316L) if your part needs maximum rust resistance (par ex., outils médicaux, pièces marines) or will be exposed to chemicals. Par exemple, a food processing plant would use SUS 304 for equipment, while a bike maker would use aluminum for frames.
