Fabrication de tôles: Guide de conception en flexion pour les ingénieurs & Acheteurs

Tôle

Le pliage de tôles est l'épine dorsale de la transformation de tôles plates en tôles fonctionnelles., 3Pièces D : des boîtiers électriques aux composants automobiles. En tant qu'ingénieur ou acheteur, obtenir une bonne conception de pliage évite des retouches coûteuses, assure la durabilité des pièces, et accélère la production. Ce guide détaille les processus de pliage de tôle, règles de conception critiques, et applications du monde réel, en utilisant les connaissances de […]

Le pliage de tôles est l'épine dorsale de la transformation de tôles plates en tôles fonctionnelles., 3Pièces D : des boîtiers électriques aux composants automobiles. En tant qu'ingénieur ou acheteur, obtenir une bonne conception de pliage évite des retouches coûteuses, assure la durabilité des pièces, et accélère la production. Ce guide se décomposesheet metal bending processes, règles de conception critiques, et applications du monde réel, using insights from Xometry’s precision fabrication services.

1. What Is Sheet Metal Bending?

Before diving into design, let’s clarify the basics:
Sheet metal bending is a fabrication process that reshapes flat metal sheets into V, U, or grooved shapes. It uses jigs or dies to apply force—force that must exceed the material’syield strength—to create plastic deformation. Unlike cutting (qui enlève de la matière) or joining (which connects parts), bending keeps the workpiece’s volume intact.

It’s one of the three core sheet metal processes, and its success depends on two key factors: choosing the right bending method and following design best practices.

2. Common Sheet Metal Bending Methods

Not all bending jobs call for the same technique. Each method has unique strengths for precision, vitesse, et compatibilité des matériaux. Below’s a breakdown to help you pick the right one:

Bending MethodComment ça marcheAvantages clésIdéal pour
Air BendingUses a V-shaped bottom die and a top punch to push metal into the die (no full contact).Low force, flexible for different angles.Prototypes or parts where tight precision isn’t critical.
BottomingPunch presses metal fully against the die’s surface—metal angle matches the die’s angle.High accuracy for tight angles.Parts with strict angle requirements (par ex., parenthèses).
FonderieSimilar to air bending but uses 5–30x more force.Ultra-haute précision, minimal springback.Grand volume, high-tolerance parts (par ex., composants aérospatiaux).
FoldingClamps the long side of the metal; a beam bends it around a curved profile.Can create positive/negative angles, gentle on materials.Large sheets (par ex., cabinet panels) or parts needing smooth edges.
WipingClamps the sheet’s long side; a tool moves up/down to bend around a profile.Faster than folding.Production à grande vitesse (note: risk of scratching thin metals).
Rotational BendingUses a rotating cylindrical upper die and matching bottom die; roller action bends the sheet.Consistent curves, ideal for rounded parts.Pipes, tubes, or curved enclosures.
Meshing BendingCreates two opposite bends (each <90°) separated by a “neutral mesh.”Avoids material distortion in tight spaces.Complex parts with overlapping bends (par ex., coffrets électriques).

Exemple: If you’re making 100 aluminum brackets for a furniture project (3mm d'épaisseur), bottoming est idéal. Use a V-mold opening of 18mm (6x the material thickness)—this ensures the bracket’s 90° angle stays precise, with no springback.

3. 10 Critical Bending Design Tips (Évitez les erreurs!)

Poor design leads to bent parts that crack, deform, or fail. Follow these rules to ensure your design works for fabrication:

3.1 Keep Wall Thickness Uniform

All parts must have consistent thickness—this prevents uneven bending. Xometry can handle sheets up to6.35mm d'épaisseur, but tolerance depends on geometry. Par exemple, a 4mm thick laptop chassis can’t have a 2mm thin section near a bend—it will warp during processing.

3.2 Add Clearance for Holes & Rainures

Holes and grooves near bends deform easily. Follow these gaps:

  • Trous: At least 2.5x the material thickness from the bend (par ex., 10mm gap for 4mm thick steel).
  • Rainures: At least 4x the material thickness from the bend edge.
  • Both features: At least 2x the material thickness from the part’s outer edge (avoids bulging).

3.3 Choose the Right Bend Radius

A too-small radius causes cracking. The minimum bend radius =1x the material thickness (par ex., 3mm radius for 3mm aluminum). Also:

  • Keep radii consistent across the part (reduces tool changes and costs).
  • Design all bends in the same plane (avoids reorienting the part, gain de temps).
  • Skip small bends on large/thick parts (they become inaccurate—e.g., a 2mm radius on a 10mm thick steel plate will twist).

3.4 Design Curling Carefully

Curling (rounded edges) adds strength but needs space:

  • Outer curl radius: At least 2x the material thickness.
  • Holes near curls: Distance = curl radius + épaisseur du matériau (par ex., 5mm radius + 3mm steel = 8mm gap).
  • Other bends near curls: Distance = (6x material thickness) + curl radius.

3.5 Limit Countersink Depth

Countersinks (for screws) are made with hand tools—don’t go too deep! Maximum depth =0.6x the material thickness (par ex., 3mm depth for 5mm thick brass). Also:

  • Countersink holes: At least 3x material thickness from bends, 4x from edges, and 8x from each other.

3.6 Get Frills Right

Frills (rounded edge folds) have three designs—follow their rules:

  • Open frills: Min inner diameter = material thickness; return length = 4x thickness.
  • Teardrop frills: Min inner diameter = material thickness; opening = 1/4x thickness; running length = 4x thickness (after the radius).

3.7 Leave Space for Beveled Flanges

Bevels on flanges need room for bending tools. For a 3mm thick steel flange with a 45° bevel, leave a 5mm gap between the bevel and the bend—this prevents the tool from scraping the bevel.

3.8 Avoid Continuous Bending (If Possible)

Continuous bends (long, unbroken curves) are hard to assemble to molds. If you must use them, make the middle section longer than the flange (par ex., a 100mm long bend on a 50mm flange needs a 60mm middle section).

3.9 Set Gaps for Notches & Tongues

  • Notches: Distance from bend = (3x material thickness) + bend radius (par ex., 3x4mm + 4mm radius = 16mm gap).
  • Tongues (pièces emboîtables): Space between tongues = max(1mm, épaisseur du matériau) (par ex., 4mm gap for 4mm steel, 1mm for 0.5mm aluminum).

3.10 Use Decompression Cuts

These cuts prevent tearing in tight bends:

  • Width of cut = at least material thickness.
  • Length of cut = longer than the bend radius (par ex., 5mm length for 4mm radius).

4. How to Calculate Bending Force

The right force ensures the metal bends without breaking. Key factors:

  • Material’s flexural strength (par ex., mild steel S235 = 42 kg/mm²).
  • Workpiece thickness (S, mm).
  • V-mold opening (V, mm).
  • Minimum internal edge (B, mm).
  • Internal radius (Ri, mm).

Use this table for90° bends on mild steel S235:

Épaisseur du matériau (S)V-Mold Opening (V)Minimum Internal Edge (B)Internal Radius (Ri)Approx. Bending Force
2mm12mm (6xS)5mm2mm840 kilos
5mm30mm (6xS)12mm5mm2,100 kilos
8mm64mm (8xS)20mm8mm3,360 kilos

Formula Simplified: Force ≈ (Flexural Strength × S² × Length) / V
(Length = bend length in mm; use this for non-90° bends or other materials.)

5. Yigu Technology’s Perspective on Bending Design

Chez Yigu Technologie, we believe bending design is about “fabrication-first thinking.” Many clients come to us with designs that look good on paper but fail in production—like a 1mm bend radius on 5mm steel (it cracks!). We work with engineers to adjust designs early: Par exemple, a client making stainless steel medical trays needed a 2mm radius (instead of 1mm) and added 8mm gaps for holes—this reduced reworks by 40%. We also recommend leveraging Xometry’s automatic bending tech for high-precision parts (up to ±0.1mm tolerance). The best bending design isn’t just about specs—it’s about making sure your part is easy to make, durable, et rentable.

FAQ: Common Sheet Metal Bending Design Questions

  1. Q: Can I bend stainless steel and aluminum the same way?
    UN: Non. Stainless steel has higher yield strength—use a larger V-mold opening (8x material thickness vs. 6x for aluminum) and more force. Par exemple, 3mm stainless steel needs a 24mm V-opening, while 3mm aluminum uses 18mm.
  2. Q: How do I prevent springback (parts losing their angle after bending)?
    UN: Use a slightly smaller angle than needed (par ex., 88° for a 90° part) and choose the right method. Fonderie (high force) minimizes springback, alors que air bending may need angle adjustments.
  3. Q: What’s the maximum bend angle I can achieve?
    Most methods handle up to 180° (par ex., folding for 180° curls on a pan). For angles over 180°, utiliser rotational bending—it’s ideal for tight curves (par ex., 270° bends on a pipe clamp).
Indice
Faire défiler vers le haut