Our Polyoxymethylene POM Injection Molding Services
Elevate your high-performance production with Yigu Technology’s premium Polyoxyméthylène (POM) Injection Molding services—where precision meets durability. Leveraging our injection molding expertise, machines avancées, and custom tooling, we deliver POM parts that excel in low friction, haute rigidité, and dimensional stability—perfect for automotive, industriel, électronique, and consumer applications demanding reliable, long-lasting components.

Qu'est-ce que le polyoxyméthylène (POM) Moulage par injection?
Polyoxyméthylène (POM), commonly known as acetal resin, is a high-performance engineering thermoplastic renowned for its exceptional mechanical properties and low friction. Derived from formaldehyde monomers (either homopolymers or copolymers), POM’s linear molecular structure gives it a unique combination of strength, rigidité, and wear resistance that mimics metal. Moulage par injection is a manufacturing process that melts POM pellets, injects the molten material into a custom mold cavity, cools it to solidify, and ejects the finished part. Ensemble, POM injection molding produces robust, precision-engineered components ideal for moving parts, engrenages, and other applications where low friction and dimensional consistency are critical.
Key Definitions & Core Concepts
| Terme | Définition |
| Polyoxyméthylène (POM) | An engineering thermoplastic (résine acétalique) available as homopolymers (harder) or copolymers (more flexible); known for low friction and high dimensional stability. |
| Moulage par injection de POM | A specialized process optimized for POM’s high melting point (160–180°C) and sensitivity to moisture—requires precise drying and temperature control to avoid defects. |
| Low Friction Coefficient | A measure of how easily POM slides against other materials (0.15–0.30), making it ideal for gears, roulements, and moving parts. |
Material Properties of POM
POM’s unique properties set it apart as a top choice for engineering applications, often replacing metal (par ex., laiton, acier) to reduce weight and cost:
- Haute résistance: Tensile strength of 60–70 MPa (POM homopolymer: 70 MPa; copolymère: 60 MPa)—stronger than ABS (40 MPa) and comparable to some metals.
- Faible frottement: Coefficient of friction (0.15–0.30) similar to Teflon but with higher wear resistance—ideal for parts that slide or rotate.
- Haute rigidité: Flexural modulus of 2.5–3.5 GPa—retains shape under load (critical for structural parts like gears or hinges).
- Stabilité dimensionnelle: Faible coefficient de dilatation thermique (CTE: 8–12 × 10⁻⁵/°C) et absorption minimale de l'humidité (0.2–0,5%)—ensures parts fit consistently in tight assemblies.
Résistance chimique: Résistant aux huiles, graisses, solvants, et la plupart des produits chimiques ménagers (except strong acids/bases like nitric acid).
Nos capacités: Delivering High-Performance POM Injection Molding
Chez Yigu Technologie, we specialize in POM injection molding—our capabilities are tailored to handle POM’s unique processing challenges (sensibilité à l'humidité, high crystallinity) and deliver parts that meet the strictest industry standards (par ex., OIN 9001 pour l'automobile, FDA pour les dispositifs médicaux).
Répartition des capacités de base
| Capacité | Détails | Des avantages pour vous |
| Expertise en moulage par injection | 15+ years specializing in POM; engineers trained to optimize processes for homopolymer, copolymère, and reinforced POM grades. | Avoid common POM pitfalls (par ex., cracking from moisture, warping from uneven cooling); ensure parts meet performance specs (par ex., low friction for gears). |
| Advanced Machinery | 38+ CNC injection molding machines (clamping force: 60–1,000 tons) with closed-loop temperature control, dehumidifying dryers, and high-precision screw systems. | Handles POM’s high crystallinity and viscosity; reduces defects from moisture (a major issue for POM) and ensures uniform filling of complex molds. |
| Outillage personnalisé | In-house mold design/fabrication (hardened steel for long runs, aluminum for prototypes); molds with polished surfaces (Ra 0.1–0.2 μm) to enhance POM’s low-friction properties. | Molds tailored to your part’s geometry (par ex., intricate gears, thin-walled hinges); lead times as short as 2–3 weeks. |
| Moulage de précision | Molding tolerance of ±0.002mm; in-line laser measurement and vision inspection for dimensional accuracy (critical for tight-fitting parts like electronic connectors). | Ensures parts like gears or bearings meet exact specs (par ex., tooth profile for gears, fit for automotive sensors). |
| Production en grand volume | Automated feeding, éjection, and assembly lines; capacity for 1.2 million+ POM parts/month (par ex., automotive hinges, consumer product gears). | Lowers unit costs for bulk orders; on-time delivery rate of 99.5% (even for large runs like automotive components). |
The POM Injection Molding Process: Step-by-Step Precision
POM’s unique characteristics—high crystallinity, sensibilité à l'humidité, and fast cooling rate—require a specialized, optimized process to maintain strength, faible friction, et stabilité dimensionnelle. Our workflow minimizes defects and maximizes performance, whether you’re producing 50 gear prototypes or 500,000 automotive hinges.
Étape 1: Préparation du matériel (Critical for POM)
POM absorbs moisture rapidly (jusqu'à 0.5% dans 24 hours at 50% humidité), which causes hydrolytic degradation (fissuration, fragilité, or reduced strength) during molding. Our preparation process eliminates this risk:
- Drying: POM pellets are dried in dehumidifying dryers at 80–100°C for 3–4 hours (homopolymer: 90°C/4hrs; copolymère: 80°C/3hrs) to reduce moisture content to <0.05%.
- Additive/Filler Blending: Mix dried pellets with additifs (UV stabilizers for outdoor use, lubricants to enhance low friction) ou charges (glass fiber for extra strength, carbon fiber for conductivity—note: fillers increase stiffness but may reduce friction performance).
- Storage: Dried pellets are stored in sealed, heated hoppers (50–60°C) to prevent reabsorbing moisture before molding.
Étape 2: Conception de moules (Optimized for POM)
POM’s high crystallinity (60–80%) and fast cooling rate cause significant shrinkage (1.5–3.0%)—mold design must account for this to avoid warping or dimensional errors:
- Shrinkage Compensation: Molds are sized 1.5–3.0% larger than the final part (homopolymer: 2.5–3.0% shrinkage; copolymère: 1.5–2.0%).
- Cooling Systems: Uniform water-cooling channels (spaced 15–25mm apart) to prevent uneven cooling (which causes warping); mold temperature maintained at 40–80°C (higher temp = slower cooling = reduced internal stress).
- Prise en charge de la conception de pièces: We advise on adding draft angles (1–2°) and fillets (0.5–1mm) to POM parts—prevents cracking during ejection and improves mold filling.
Étape 3: Injection Parameters (Tailored to POM Grades)
POM’s narrow melting range (160–180°C for copolymer; 175–185°C for homopolymer) requires precise parameter tuning to avoid degradation (yellowing) or incomplete filling. Below are standard settings for two common grades:
| Paramètre | Copolymère POM (Usage général) | Homopolymère POM (Haute résistance) | Objectif |
| Barrel Temperature | 160–180°C (zones 1–4: increasing from 160°C to 180°C) | 175–185°C (zones 1–4: increasing from 175°C to 185°C) | Melts POM evenly without breaking down (too high = degradation; too low = poor flow). |
| Injection Pressure | 70–120 MPa | 80–130 MPa | Overcomes POM’s viscosity to fill mold cavities (critical for thin-walled parts like hinges). |
| Mold Temperature | 40–60°C | 60–80°C | Reduces internal stress; slows cooling to control crystallinity (higher temp = more uniform crystals = better strength). |
| Temps de cycle | 15–30 secondes | 20–35 seconds | Balances cooling (pour éviter la déformation) and production speed; longer for thick parts (par ex., engrenages) to ensure full crystallization. |
Étape 4: Post-Molding Operations
After demolding, POM parts may undergo:
- Garniture: Removing excess plastic (éclair) with sharp, low-friction tools (to avoid scratching POM’s surface—critical for low-friction parts like bearings).
- Recuit: Heating parts to 120–140°C for 1–2 hours, then cooling slowly (10–15°C/hour) pour réduire le stress interne (prevents cracking in high-stress applications like automotive gears).
- Traitement de surface: Applying coatings, texturation, or printing (voir la rubrique 5 pour plus de détails).
- Inspection: QC checks for:
- Précision dimensionnelle: Laser measurement (Tolérance de ±0,002 mm) to ensure parts fit in assemblies.
- Friction Performance: Taber abrasion testing (wear rate: <10 mg/1,000 cycles for general-purpose POM).
Force: Tensile testing (ASTM D638) to verify strength meets specs (≥60 MPa for copolymer).
Matériels: Choosing the Right POM Grade for Your Project
Not all POM is the same—each grade (homopolymer, copolymère, renforcé) is tailored to specific applications, balancing strength, flexibilité, et le coût. Selecting the right grade ensures your parts meet performance, regulatory, and design goals.
Common POM Types for Injection Molding
| POM Type | Key Traits | Résistance à la traction (MPa) | Applications courantes |
| Homopolymère POM | Plus fort (Rive D: 85), résistance supérieure, better wear resistance; more brittle than copolymer. | 70 | Pièces très sollicitées (engrenages, arbres à cames), industrial machinery components, precision bearings. |
| Copolymère POM | More flexible (Rive D: 80), better impact resistance (10 kJ/m² vs. homopolymer’s 5 kj /), easier to process. | 60 | Pièces automobiles (charnières, poignées de porte), produits de consommation (zipper sliders, toy mechanisms), electronic connectors. |
| POM rempli de verre (POM-GF10/20) | 10–20% glass fiber; 30–50% higher stiffness (flexural modulus: 4.0–5.0 GPa) contre. unfilled POM; reduced friction. | 75–85 | Pièces structurelles (supports automobiles, poignées d'outils industriels), parts under heavy load. |
| UV-Stabilized POM | Added UV inhibitors; conserve 80% of strength after 1,000 hours of sunlight exposure (contre. 50% for standard POM). | 60–70 | Pièces extérieures (lawnmower gears, patio furniture hinges), automotive exterior components. |
| Recycled POM (rPOM) | Made from post-industrial waste; retains 75–85% of virgin POM’s strength; cost-effective for non-critical parts. | 45–55 | Non-structural parts (storage bin latches, toy accessories), low-stress consumer goods. |
Material Selection Tips
- Prioritize strength vs. flexibilité: For high-stress moving parts (engrenages), choose POM homopolymer; for parts prone to impact (charnières de porte), pick copolymer.
- Consider environmental exposure: Pour une utilisation en extérieur, select UV-stabilized POM; for chemical-rich environments (machines industrielles), use standard copolymer (better chemical resistance than homopolymer).
Embrace sustainability: Our rPOM is ideal for brands focused on eco-friendly practices—use it for non-critical parts (par ex., toy gears) to cut costs and reduce environmental impact.
Traitement de surface: Enhancing POM’s Function & Esthétique
POM’s natural surface is smooth (supports its low-friction properties) but can be modified to improve grip, durabilité, or branding—without compromising its core performance. We offer five core treatments tailored to POM:
| Traitement | Processus | Avantages | Applications idéales |
| Finition des surfaces | Polissage (for mirror shine) or sandblasting (for matte finish); uses diamond abrasives to avoid damaging POM’s structure. | Améliore l'esthétique; maintains low friction (finition polie) or improves grip (finition mate). | Produits de consommation (toy mechanisms), automotive interior trim. |
| Texturation | Ajout de motifs (côtelé, knurled, ou doux au toucher) via mold inserts or chemical etching. | Améliore l'adhérence (par ex., poignées d'outils, door knobs); cache des défauts mineurs (par ex., shrink marks). | Outils industriels, consumer product handles. |
| Revêtement | Applying dry-lubricant coatings (PTFE-based) or wear-resistant coatings (polyuréthane); cures at 80–100°C. | Boosts low-friction properties (Revêtement PTFE: coefficient of friction 0.10) or wear resistance (for high-load parts). | Engrenages, roulements, sliding mechanisms. |
| Peinture | Using POM-compatible primers (adhesion promoters) and acrylic paints; airbrushed for thin, even coats. | Custom colors for branding; Protection UV (adds layer of defense for outdoor parts). | Produits de consommation (colored toy gears), pièces intérieures automobiles. |
| Impression | Pad printing or laser marking (uses low-temperature inks to avoid POM deformation); ink bonds to POM’s surface via chemical adhesion. | Clair, durable logos/labels; no risk of ink smudging (critical for medical devices or electronics). | Medical tool handles, electronic component markings. |
Avantages: Why Choose POM Injection Molding?
POM injection molding offers unmatched benefits for engineering applications requiring a blend of strength, faible friction, and dimensional stability—often replacing metal to reduce weight, coût, and maintenance.
Key Advantages of POM Injection Molding
- Haute résistance & Stiffness: Stronger than most plastics (ABS, PP) and comparable to brass (résistance à la traction: 60–70 MPa vs. brass’s 70–80 MPa)—ideal for structural parts that replace metal.
- Faible frottement & Résistance à l'usure: Coefficient of friction (0.15–0.30) and wear rate ( <10 mg/1,000 cycles) make POM parts last 3–5x longer than ABS or PP in moving applications (par ex., engrenages).
- Stabilité dimensionnelle: Minimal moisture absorption (0.2–0,5%) and low thermal expansion (8–12 × 10⁻⁵/°C)—ensures parts fit consistently in tight assemblies (par ex., connecteurs électroniques, capteurs automobiles).
- Rentabilité: Cheaper than metal (POM: 3.50–5.00/kg vs. laiton: 8.00–12.00/kg) and requires less post-processing (no machining like metal parts); injection molding drives unit costs down to 0.15–0.80 per part.
- Résistance chimique: Résiste aux huiles, graisses, and solvents—ideal for parts exposed to harsh fluids (par ex., composants de moteurs automobiles, machines industrielles).
POM vs. Other Engineering Plastics & Métal
| Matériel | Résistance à la traction (MPa) | Coefficient de friction | Coût (par kg) | Idéal pour |
| Copolymère POM | 60 | 0.20 | 3.50–4.50 | Balanced strength/flexibility (charnières, connecteurs). |
| Homopolymère POM | 70 | 0.15 | 4.00–5.00 | High-stress moving parts (engrenages, roulements). |
| ABS | 40 | 0.40 | 2.50–3.50 | Low-stress consumer goods (casings). |
| Laiton | 75 | 0.30 | 8.00–12.00 | High-heat parts (but heavy/costly). |
Industrie des applications: Where POM Injection Molding Excels
POM’s unique blend of low friction, haute résistance, and dimensional stability makes it indispensable in engineering-focused industries—often replacing metal to cut costs and weight while maintaining performance. Below are real-world use cases and our tailored solutions:
| Industrie | Common POM Parts | Nos solutions |
| Automobile | Charnières de porte, window regulators (engrenages), composants du système de carburant (vannes), interior trim clips, steering column parts. | POM copolymer for hinges (résistance aux chocs); POM homopolymer for gears (résistance à l'usure); UV-stabilized POM for exterior trim; precision molding for tight fits in engine bays. |
| Produits de consommation | Curseurs de fermeture éclair, toy mechanisms (engrenages, charnières), kitchen tool handles (can openers), luggage latches, appliance knobs. | POM copolymer for toy parts (flexibilité); polished POM homopolymer for zipper sliders (faible friction); texturing for tool handles (adhérence améliorée); high-volume production for mass-market goods. |
| Électronique | Boîtiers de connecteurs, composants de commutation (sliders), keyboard keycaps, camera lens gears, printer rollers. | Precision-molded POM copolymer (dimensional stability for connectors); low-friction POM homopolymer for printer rollers; flame-retardant additives (meets UL94 V0) for electrical parts. |
| Industrial Parts | Engrenages (systèmes de convoyeurs), roulements (machinerie), roues de pompe, tiges de valve, porte-outils. | Glass-filled POM (POM-GF20) for pump impellers (haute rigidité); POM homopolymer for gears (résistance à l'usure); PTFE coatings for bearings (ultra-low friction); chemical-resistant grades for fluid-handling parts. |
| Dispositifs médicaux | Pistons de seringue, poignées d'outils chirurgicaux, inhaler valves, diagnostic equipment components (sliders). | FDA-compliant POM copolymer (biocompatible); smooth surface finishing (facile à stériliser); precision molding for tight tolerances (pistons de seringue); low-friction coatings for moving parts. |
Études de cas: Our POM Injection Molding Success Stories
We’ve helped clients across industries solve complex challenges with POM injection molding—delivering parts that replace metal, reduce maintenance, et améliorer les performances. Below are three standout projects:
Étude de cas 1: POM Copolymer Automotive Door Hinges
- Défi: Il faut un constructeur automobile de premier plan 500,000 door hinges that were lightweight (pour améliorer le rendement énergétique), résistant aux chocs (to withstand 100,000+ door openings), et rentable (to replace brass hinges). Their previous brass hinges were heavy (adding 0.5kg per car) and prone to rust.
- Solution: Nous avons recommandé POM copolymer for its balance of flexibility (résistance aux chocs: 10 kj /) et la force. Our custom molds included shrinkage compensation (2.0% for copolymer) and uniform cooling channels to prevent warping. We added a minor texturing to the hinge surfaces to reduce friction and improve wear resistance.
- Résultats: The POM hinges were 60% lighter than brass (reducing per-car weight by 0.3kg and improving fuel efficiency by 1.5%) et le coût 40% moins. They passed 150,000 door-opening tests with no cracks or deformation, and showed no signs of wear after 3 years of real-world use. The automaker expanded their order to 1 million hinges/year for all their sedan models.
Étude de cas 2: POM Homopolymer Industrial Conveyor Gears
- Défi: A logistics company needed 10,000 conveyor gears that could withstand 24/7 opération, resist lubricating oil, and have low friction (to reduce energy use). Their previous ABS gears failed after 3 months due to high wear and poor oil resistance.
- Solution: Nous avons utilisé POM homopolymer for its exceptional wear resistance (Taber wear rate: <5 mg/1,000 cycles) and oil resistance. Our molds were polished to Ra 0.1 µm (to enhance low-friction properties) and included optimized gating to ensure full filling of the gear teeth. Post-molding, we annealed the gears at 130°C for 1 hour to reduce internal stress.
- Résultats: The POM homopolymer gears lasted 18 mois (6x longer than ABS) and reduced conveyor energy use by 8% (due to lower friction). They showed no swelling or degradation after 12 months of exposure to lubricating oil, and the client now uses our POM gears for all their global conveyor systems—saving $200,000/year in replacement costs.
Étude de cas 3: FDA-Compliant POM Copolymer Syringe Plungers
- Défi: Nous avons besoin d'une entreprise de dispositifs médicaux 200,000 syringe plungers that were biocompatible (conforme à l'ISO 10993), lisse (to ensure precise fluid control), and sterilizable (via autoclaving). Their previous PP plungers were too flexible, causing inconsistent fluid delivery.
- Solution: Nous avons sélectionné FDA-compliant POM copolymer (meets USP Class VI standards) for its stiffness (flexural modulus: 2.8 GPa) and smooth surface. Our molds had mirror-polished cavities (Râ 0.05 µm) to ensure plunger smoothness, and we optimized injection parameters (170°C barrel temp, 90 Pression MPa) to avoid surface defects. Post-molding, we performed 100% contrôles dimensionnels (Tolérance de ±0,002 mm) to ensure consistent fit in syringes.
Résultats: The POM plungers provided 30% more precise fluid control than PP (per clinical tests) et réussi 50+ cycles autoclaves (121°C) with no warping. They met all ISO 10993 normes de biocompatibilité, and the client expanded our partnership to produce plungers for their entire line of insulin and vaccine syringes.
Why Choose Us for Your POM Injection Molding Needs?
With countless injection molding suppliers offering POM services, Yigu Technology stands out for our deep specialization in POM, uncompromising quality, and ability to solve engineering challenges. Here’s why leading brands in automotive, industriel, and medical sectors trust us:
1. Specialized POM Expertise
We don’t just mold plastics—we specialize in Polyoxymethylene (POM). Nos ingénieurs ont 15+ years of experience optimizing processes for POM’s unique traits:
- Moisture sensitivity: Proprietary drying protocols (à <0.05% humidité) that eliminate cracking and brittleness.
- Shrinkage control: Mold design techniques (shrinkage compensation, uniform cooling) that ensure dimensional accuracy (±0,002mm).
- Low-friction optimization: Mold polishing (Ra 0.1–0.2 μm) and coating solutions that enhance POM’s natural low-friction properties.
We’ve worked with every POM grade (homopolymer, copolymère, rempli de verre, recyclé) and know how to tailor solutions for metal replacement, high-wear, or precision applications.
2. Rigorous Quality Assurance
Quality is critical for POM parts—especially those replacing metal or used in safety-critical applications. Nous tenons OIN 9001 (fabrication générale) et OIN 13485 (fabrication de dispositifs médicaux) attestations, avec un 99.6% defect-free rate for POM components. Our quality checks include:
- Pre-molding: Moisture testing (Karl Fischer titration) to ensure POM pellets are dry (<0.05%).
- In-molding: Real-time laser measurement for dimensional accuracy and vision inspection for surface defects (rayures, éclair).
- Post-molding:
- Wear testing (Taber abrasion) for moving parts (engrenages, roulements).
- Tensile testing (ASTM D638) pour vérifier la solidité (≥60 MPa for copolymer).
- Regulatory compliance (FDA 21 CFR 177.2470 for food/medical POM; UL94 V0 for flame-retardant POM).
3. Customer-Focused Service
We treat your project as a partnership—our goal is to solve your problems, not just deliver parts. From day one, you’ll work with a dedicated account manager who:
- Provides free material/design consultations (par ex., helping you choose between POM homopolymer and copolymer for metal replacement).
- Shares 3D mold designs and sample parts (dans 4 jours) for approval before full production.
- Offers flexible lead times: 3–5 jours pour les prototypes (moules en aluminium), 2–4 semaines pour les tirages à gros volume (steel molds).
- Provides 24/7 soutien pour les problèmes urgents (par ex., expediting parts for broken industrial machinery).
4. Solutions innovantes
Nous investissons 7% de notre chiffre d’affaires annuel en R&D to push the boundaries of POM injection molding. Recent innovations include:
- Metal-Replacement POM Blends: A proprietary mix of POM homopolymer and glass fiber (POM-GF15) that matches 90% of brass’s strength at 50% the weight and cost.
- Self-Lubricating POM: POM grades infused with solid lubricants (PTFE particles) that reduce friction by 30% contre. standard POM—ideal for oil-free applications (par ex., food-processing machinery).
- Fast-Cycle Molding: Custom cooling systems that cut POM cycle time by 20% (from 25s to 20s) without compromising quality—speeding up production for high-volume orders.
5. Sustainable Practices
We’re committed to reducing our environmental impact while delivering top-tier POM parts:
- Recycled POM (rPOM): Nous nous approvisionnons 40% of our POM materials from post-industrial waste (par ex., POM scrap from automotive manufacturing) and offer rPOM grades that cost 15–25% less than virgin POM.
- Réduction des déchets: Nous recyclons 96% of production scrap (éclair, pièces défectueuses) back into the molding process—sending only 4% to landfills.
Efficacité énergétique: Our injection molding machines use variable-frequency drives (VFDs) to reduce energy consumption by 22% contre. standard equipment—lowering our carbon footprint and your costs.