Dans Usinage CNC, pourquoi deux ateliers produisent-ils des pièces en aluminium avec la même machine : l'un d'entre eux obtient des surfaces lisses et une longue durée de vie des outils, l'autre étant confronté à des cassures d'outils fréquentes et à des bords rugueux? The answer lies in mastering parameters of CNC processing aluminum. L’aluminium est mou, sa nature ductile le rend facile à usiner, mais mauvais réglages (par ex., too slow a cutting speed or too deep a cut) waste time, outils de dégâts, and ruin parts. Cet article décompose 6 core parameters, sélection d'outils, cooling strategies, exemples concrets, and common mistakes to avoid, helping you achieve flawless aluminum machining.
Why Aluminum CNC Processing Needs Specialized Parameters
Aluminium (and its alloys like 6061-T6, 7075-T6) isn’t like steel or titanium—it has unique traits that demand tailored parameters:
- Low Hardness: Aluminum’s Brinell hardness (HB 25–100) means it can be cut at high speeds, but softness also causes “built-up edge” (BUE)—molten aluminum sticks to the tool, ruining surface finish.
- High Thermal Conductivity: Aluminum transfers heat 5x faster than steel. Without proper cooling, heat damages tools and warps thin-walled parts.
- Ductilité: Aluminum produces long, stringy chips that can clog machines if chip evacuation parameters are off.
These traits mean aluminum needsvitesses de coupe élevées, optimized feed rates, eteffective cooling—parameters that would fail for harder materials.
6 Core Parameters of CNC Processing Aluminum
The following parameters are the “engine” of successful aluminum machining. Each directly impacts efficiency, qualité, and tool life—use the tables and tips to fine-tune them:
1. Cutting Speed (Vc)
Cutting speed is the speed of the tool’s cutting edge relative to the workpiece (measured in m/min). It’s the most critical parameter for aluminum—too slow causes BUE; too fast overheats tools.
| Tool Material | Recommended Cutting Speed (m/mon) | Key Reasoning | Ideal Alloys |
|---|---|---|---|
| Outils en carbure | 200–800 | Carbide’s high heat resistance handles aluminum’s fast cutting; TiAlN-coated carbide works best (reduces BUE). | – 6061-T6: 300–600 m/min (balanced for speed/quality)- 7075-T6: 200–500 m/min (harder alloy needs slower speed) |
| HSS Tools | 50–150 | HSS can’t handle high heat—slower speeds prevent tool softening. | Alloys for low-precision parts (par ex., 1100-H14, 3003-H14). |
Pro Tip: For large workpieces (par ex., 1m aluminum plates), start at the lower end of the range (300 m/mon) to avoid vibration; pour petites pièces (par ex., 10mm brackets), use higher speeds (600–800 m/min) to save time.
2. Vitesse d'alimentation (Fz & F)
Feed rate has two key metrics:
- Feed per Tooth (Fz): The distance the tool moves per tooth (mm/tooth)—controls chip thickness.
- Total Feed Rate (F): The overall tool movement speed (mm/min)—calculated as
F = N × z × Fz(N = spindle speed, z = number of tool teeth).
| Machining Type | Feed per Tooth (Fz, mm/tooth) | Total Feed Rate (F, mm/min) | Key Impact |
|---|---|---|---|
| Roughing | 0.1–0,3 | 500–3,000 | Faster feed removes material quickly; thicker chips reduce BUE. |
| Semi-Finishing | 0.05–0.2 | 300–1,500 | Balances speed and surface finish; avoids chip buildup. |
| Finition | 0.02–0.1 | 100–800 | Slow feed creates smooth surfaces (Râ < 1.6 µm); critical for visible parts. |
Exemple: A carbide end mill (z=4 teeth) machining 6061-T6 at N=5,000 rpm with Fz=0.2 mm/tooth → Total feed rate F = 5,000 × 4 × 0.2 = 4,000 mm/min.
3. Depth of Cut (Ap)
Depth of cut is the distance the tool penetrates the workpiece (mm). It balances material removal rate and tool load—aluminum’s softness lets you use larger depths than steel.
| Machining Type | Depth of Cut (Ap, mm) | Key Goal | Tool Consideration |
|---|---|---|---|
| Roughing | 2–5 | Remove 80–90% of excess material quickly; minimize number of passes. | Use strong tools (par ex., 10mm diameter carbide end mills) to handle load. |
| Semi-Finishing | 0.5–2 | Smooth rough surfaces; prepare for finishing (leave minimal material for final cut). | Medium-sized tools (par ex., 6mm diamètre) balance precision and speed. |
| Finition | 0.1–0.5 | Achieve final dimensions and surface finish; avoid overcutting. | Pointu, high-precision tools (par ex., 4mm diameter TiAlN-coated end mills). |
Warning: For thin-walled aluminum parts (par ex., 1mm thick enclosures), limit Ap to 0.1–0.3 mm—too deep a cut causes warping.
4. Vitesse de broche (N)
Vitesse de broche (tr/min) is the rotational speed of the tool. It’s tied to cutting speed via the formulaN = (1000 × Vc) / (π × D) (D = tool diameter, mm).
| Tool Diameter (D, mm) | Vitesse de broche (N, tr/min) (for Vc=400 m/min) | Key Note |
|---|---|---|
| 3 | 42,441 | Small tools need high speeds—use dynamic balancing to avoid vibration. |
| 6 | 21,220 | Medium tools: Balance speed and stability; use coolant to reduce heat. |
| 12 | 10,610 | Large tools: Lower speeds prevent tool chatter; check collet tightness. |
| 20 | 6,366 | Extra-large tools: Use slow speeds (5,000–8,000 rpm) for safety. |
Real-World Example: A 6mm carbide tool machining 6061-T6 at Vc=400 m/min → N = (1000×400)/(3.14×6) ≈ 21,220 tr/min. This speed removes material fast without overheating.
5. Refroidissement & Lubrication
Aluminum’s high thermal conductivity means cooling isn’t optional—it prevents tool damage and BUE.
| Method | Principales fonctionnalités | Applications idéales |
|---|---|---|
| Water-Based Coolant | – High heat dissipation (cools 2x faster than oil).- Faible coût; facile à nettoyer. | High-volume machining (par ex., automotive aluminum parts); roughing/semi-finishing. |
| Oil-Based Coolant | – Réduit les frottements (prevents BUE better than water).- Improves surface finish. | Precision finishing (par ex., visible aluminum enclosures); thin-walled parts. |
| Dry Cutting | – No coolant needed; reduces cleanup.- Only works with sharp, coated tools. | Small-batch, low-precision parts (par ex., prototypes); avoid for large cuts. |
Pro Tip: For finishing, mix 5–10% oil-based lubricant into water-based coolant—it combines heat dissipation with BUE prevention, creating mirror-like surfaces (Râ < 0.8 µm).
6. Sélection d'outils (Matériel & Géométrie)
Even perfect parameters fail with the wrong tool. Aluminum needs tools that resist BUE and cut cleanly.
| Tool Feature | Recommendation for Aluminum | Key Benefit |
|---|---|---|
| Matériel | – Carbure (TiAlN or TiCN-coated): Best for high speeds.- Céramique: For extreme speeds (800+ m/mon) on soft alloys. | – TiAlN coating repels aluminum (reduces BUE).- Ceramic handles heat without wear. |
| Géométrie | – Positive rake angle (10°–20°): Reduces cutting force; minimizes BUE.- Sharp cutting edges: Cleanly shears aluminum (avoids tearing).- Wide chip grooves: Prevents chip clogging. | – Positive rake angle makes cutting easier—ideal for soft aluminum.- Sharp edges improve surface finish. |
Avoid: HSS tools for high-volume work—they wear out 5x faster than carbide when cutting aluminum at 300+ m/mon.
Parameter Table for Common Aluminum Alloys (6061-T6 & 7075-T6)
Use this ready-to-use table to start machining—adjust based on your machine’s capacity and tool specs:
| Paramètre | 6061-T6 (Roughing) | 6061-T6 (Finition) | 7075-T6 (Roughing) | 7075-T6 (Finition) |
|---|---|---|---|---|
| Cutting Speed (m/mon) | 300–600 | 500–800 | 200–500 | 400–700 |
| Feed per Tooth (mm/tooth) | 0.1–0,3 | 0.02–0.1 | 0.08–0.25 | 0.01–0.08 |
| Depth of Cut (mm) | 2–5 | 0.1–0.5 | 1.5–4 | 0.1–0.4 |
| Vitesse de broche (tr/min) | 3,000–10 000 | 5,000–15,000 | 2,500–8 000 | 4,000–12,000 |
| Cooling Method | Water-based coolant | Oil-water mix | Water-based coolant | Oil-water mix |
Real-World Case: Machining 6061-T6 Aluminum Enclosures
- Problème: A consumer electronics firm needed 1,000 aluminum enclosures (100mm×50mm×2mm) avec:
- Finition superficielle: Râ < 1.6 µm (visible, no scratches).
- Production time: < 2 minutes par partie.
- Tool life: > 500 parts per end mill.
- CNC Solution:
- Tool: 6mm TiAlN-coated carbide end mill (z=4 teeth).
- Parameters: Vc=500 m/min, Fz=0.15 mm/tooth, Ap=0.3 mm (finition), N=26,535 rpm.
- Refroidissement: 8% oil-water mix (prevents BUE, cools tool).
- Résultat:
- Finition superficielle: Ra=1.2 μm (meets requirement).
- Production time: 1.8 minutes par partie (beats target).
- Tool life: 620 parts per end mill (reduces tool costs by 20%).
Common Mistakes & How to Fix Them
Even experts mess up aluminum parameters—here’s how to solve 3 frequent issues:
- Built-Up Edge (BUE) on Tool
- Cause: Too slow cutting speed (Vc < 200 m/mon) or dry cutting.
- Fix: Increase Vc by 50–100 m/min; add oil-based lubricant to coolant.
- Chatter/Vibration
- Cause: Too high spindle speed for large tools (par ex., 20mm tool at 10,000 tr/min) or loose clamping.
- Fix: Reduce N by 20–30%; use a stronger clamp (par ex., hydraulic vise) to secure the workpiece.
- Warped Thin-Walled Parts
- Cause: Too deep a cut (Ap > 0.3 mm) or uneven cooling.
- Fix: Limit Ap to 0.1–0.2 mm; use a coolant nozzle directed at the cutting area (ensures even cooling).
Yigu Technology’s Perspective
Chez Yigu Technologie, we seeparameters of CNC processing aluminum as the key to unlocking aluminum’s full potential. Nos machines CNC (YG-6000 series) are optimized for aluminum: they have high-speed spindles (jusqu'à 24,000 tr/min) for fast cutting, and smart coolant systems that auto-adjust flow based on Vc and Ap. We’ve helped clients cut aluminum machining time by 35% and extend tool life by 40%—from automotive part makers to electronics firms. As aluminum use grows in lightweight designs, we’re adding AI parameter optimization to our software—soon, it will auto-suggest settings based on your alloy and part, making flawless machining accessible to everyone.
FAQ
- Q: Can I use the same parameters for 6061-T6 and 7075-T6?UN: No—7075-T6 is 30% harder than 6061-T6. Reduce Vc by 20–30% and Fz by 10–20% for 7075-T6 to avoid tool wear. Par exemple, if 6061-T6 uses Vc=500 m/min, 7075-T6 should use Vc=350–400 m/min.
- Q: What’s the best coolant for aluminum finishing?UN: A 5–10% oil-water emulsion (par ex., mineral oil + eau) works best. It cools like water and lubricates like oil—preventing BUE and creating smooth surfaces. Avoid pure water (causes BUE) or pure oil (poor heat dissipation).
- Q: How do I calculate spindle speed for a custom tool diameter?UN: Use the formula
N = (1000 × Vc) / (π × D). Par exemple, a 8mm tool machining 6061-T6 at Vc=400 m/min → N = (1000×400)/(3.14×8) ≈ 15,924 tr/min. Most CAM software (par ex., Mastercam) calculates this automatically.
