Comment développer un prototype fiable de brise-mur par usinage CNC?

moulage par injection de plastiques techniques

Un prototype de brise-mur usiné CNC haute performance est la pierre angulaire du développement de produits : il valide la rationalité structurelle, teste les fonctions de base (comme le concassage à grande vitesse et l'étanchéité), et minimise les risques avant la production de masse. Cet article décompose systématiquement l'ensemble du processus de développement, de la conception aux tests, utiliser des comparaisons basées sur les données, directives étape par étape, et des solutions pratiques pour relever les principaux défis. […]

A high-performance CNC machining wall breaker prototype is a cornerstone of product development—it validates structural rationality, teste les fonctions de base (comme le concassage à grande vitesse et l'étanchéité), et minimise les risques avant la production de masse. Cet article décompose systématiquement l'ensemble du processus de développement, de la conception aux tests, utiliser des comparaisons basées sur les données, directives étape par étape, et des solutions pratiques pour relever les principaux défis.

1. Préparation préliminaire: Lay the Groundwork for Prototype Precision

Preliminary preparation directly impacts the prototype’s accuracy and functionality. It focuses on two critical tasks: 3Modélisation D & structural optimization et sélection des matériaux, both tailored to the unique demands of wall breakers (par ex., high-speed rotation, sécurité alimentaire).

1.1 3Modélisation D & Structural Optimization

Use professional CAD software (par ex., SolidWorks, UG) to create a detailed 3D model of the wall breaker. The model must cover all components and prioritize structural optimization to avoid machining errors:

  • Component Breakdown: Split the machine into parts like the cup body, assemblage de lame, motor base, control panel, et sealing ring for easier machining and assembly.
  • Key Optimization Focus Areas:
  • Blade Layout: Design blade angles (15–20°) and distribution to ensure efficient crushing of hard ingredients (par ex., noix, bones).
  • Sealing Structure: Precisely design the groove for the silicone sealing ring (tolérance: ±0,05 mm) to prevent liquid leakage during high-speed rotation.
  • Assembly Compatibility: Mark positions of buckles, screw holes, and positioning grooves to ensure components fit securely (par ex., cup body locks tightly to the base).

Why optimize these structures? Poor blade layout can reduce crushing efficiency by 30%, while a flawed sealing design may cause leakage—leading to rework that adds 2–3 days to the timeline.

1.2 Sélection des matériaux: Match Materials to Component Functions

Different components of the wall breaker require materials with specific properties (par ex., wear resistance for blades, transparency for cup bodies). The table below compares the most suitable materials:

Type de matériauAvantages clésIdeal ComponentsFourchette de coût (par kg)Usinabilité
ABS/PC PlasticEasy to cut, faible coût, simulates injection molding textureCup body, body shell, handle (non-load-bearing parts)\(2–)5Excellent (fast cutting, low tool wear)
Alliage d'aluminiumHaute résistance, good heat dissipation, durableMotor base, blade brackets (load-bearing/heat-generating parts)\(7–)12Bien (requires anodizing for rust resistance)
Acier inoxydable (304/316)Haute dureté, résistant à la corrosion, alimentaireBlades, high-wear components (contacts food/ingredients)\(15–)20Modéré (needs EDM for sharp edges)
Resin CompoundFaible coût, fast reproduction of complex shapesSmall-batch replica parts (paired with CNC-machined molds)\(10–)14Modéré (not suitable for standalone structural parts)

Exemple: The cup body, which needs transparency for ingredient observation, utilise PC plastic. Blades, requiring wear resistance and food safety, are made of 304 acier inoxydable.

2. Processus d'usinage CNC: Turn Design into Physical Components

The CNC machining phase follows a linear workflow—model slicing & programming → billet preparation → rough machining → finishing—with special attention to wall breaker-specific structures (par ex., curved cup inner walls, sharp blades).

2.1 Model Slicing & Programmation

Import the 3D model into CAM software (par ex., Mastercam, PowerMill) to generate toolpaths and G-code. Key steps include:

  1. Cutting Parameter Setting (by Material):
  • Plastique ABS: Cutting speed = 1800–2200 rpm; Feed rate = 600–800 mm/min.
  • Alliage d'aluminium: Cutting speed = 1000–1500 rpm; Feed rate = 400–600 mm/min (use coolant to prevent sticking).
  • Acier inoxydable: Cutting speed = 800–1000 rpm; Feed rate = 200–300 mm/min (slower speed for hardness).
  1. Sélection d'outils:
  • For curved surfaces (cup inner wall): Utiliser ball end mills (Φ3–5mm) to ensure smoothness.
  • For blades: Utiliser carbide tools or wire EDM to achieve sharp edges (tolérance: ±0,05 mm).
  • For heat dissipation holes: Utiliser hollow tools or EDM for complex hole shapes (ensures uniform heat flow).
  1. Multi-Axis Linkage: Use a five-axis machine tool for complex components (par ex., blade brackets) to avoid tool interference and ensure precision.

2.2 Exécution de l'usinage: Étapes clés & Precautions

Proper execution ensures component accuracy. Follow this sequence:

  1. Billet Preparation: Cut raw materials into billets matching component sizes (par ex., ABS blocks for cup bodies, aluminum sheets for motor bases) and reserve 0.5–1mm machining allowance.
  2. Clamping: Secure billets to the machine table—use vacuum adsorption for plastic parts (prevents deformation) and three-jaw chucks for metal parts (ensures stability).
  3. Usinage grossier: Use large-diameter tools (Φ8–10mm) to remove 80–90% of excess material quickly (enregistre 30% of machining time).
  4. Finition: Use small-diameter tools (Φ0.5–2mm) to refine details (par ex., blade edges, trous filetés) and achieve surface roughness Ra <0.8μm for visible parts.

Critical Precaution: Replace worn tools immediately—dull tools can increase dimensional error by 0.2mm, ruining blade sharpness or sealing groove precision.

3. Post-traitement: Enhance Appearance & Fonctionnalité

Post-processing removes machining flaws and prepares components for assembly. It includes traitement de surface, sérigraphie, et pre-assembly checks.

3.1 Traitement de surface: Improve Durability & Esthétique

Choose treatment methods based on material and component function:

  • Plastic Parts (Cup Body, Shell):
  1. Ponçage (200–800 grit sandpaper) to remove tool marks.
  2. Sandblasting to simulate injection molding texture.
  3. Spraying food-grade paint (par ex., matte UV paint) pour la résistance aux rayures.
  • Metal Parts (Motor Base, Blades):
  • Alliage d'aluminium: Anodisation (matte/silver finish) pour éviter la rouille.
  • Acier inoxydable: Polishing to achieve a smooth, food-safe surface.

3.2 Silk Screen Printing & Pre-Assembly Checks

  • Silk Screen Printing: Print brand logos, operation instructions (par ex., “High Speed,” “Smoothie,” “Faire le ménage”), and safety warnings (par ex., “Do Not Touch Blades”) using high-temperature, wear-resistant ink.
  • Pre-Assembly Checks:
  1. Verify dimensions with calipers (par ex., cup body capacity, sealing groove size).
  2. Test blade sharpness (use a sample ingredient to check crushing fineness).
  3. Inspect surface quality (no scratches, paint chips, or ink smudges).

4. Assemblée & Essai: Validate Prototype Performance

Assembly and testing confirm the prototype meets design standards for functionality, sécurité, et durabilité.

4.1 Step-by-Step Assembly

  1. Attach the motor base (alliage d'aluminium) to the body shell using M3 screws (couple: 1.5–2.0 N·m).
  2. Install the assemblage de lame into the motor base (ensure it rotates freely without jitter).
  3. Fit the silicone sealing ring into the cup body’s groove (press firmly to secure).
  4. Mount the control panel onto the body shell (align buttons with internal circuits).
  5. Lock the cup body to the base (test the buckle for secure attachment).

4.2 Testing Checklist: Ensure Reliability

Test the prototype in three key areas:

Test CategoryTools/MethodsPass Criteria
Functional TestSpeed meter, water testBlades rotate at 20,000–30,000 rpm (meets crushing requirements).- No water leakage during 5-minute high-speed operation.- Buttons respond correctly (par ex., “Stophalts rotation immediately).
Structural TestPull test, temperature monitorHandle resists 5kg pull force without loosening.- Motor base temperature <60°C after 30-minute operation (good heat dissipation).
Appearance TestInspection visuelle, gloss meterNo scratches, paint defects, or smudged logos.- Consistent color (no visible aberration between components).

Yigu Technology’s Perspective

Chez Yigu Technologie, we view CNC machining wall breaker prototypes as adesign validator—they bridge ideas and mass production while cutting risks. Our team prioritizes two core aspects: precision and safety. For critical parts like blades, nous utilisons 304 stainless steel and EDM to ensure sharpness and food safety. For sealing structures, we control tolerance to ±0.03mm (tighter than industry standards) to eliminate leakage. We also integrate 3D scanning post-machining to verify dimensional accuracy. By focusing on these details, we help clients reduce post-production defects by 25–30% and accelerate time-to-market by 1–2 weeks. Whether you need an appearance prototype for exhibitions or a functional one for testing, we tailor solutions to your goals.

FAQ

  1. Q: How long does it take to produce a CNC machining wall breaker prototype?

UN: Typically 8–10 days. This includes 1–2 days for 3D modeling, 2–3 days for CNC machining, 1–2 days for post-processing, and 2–3 days for assembly and testing.

  1. Q: Can I use resin instead of ABS/PC plastic for the cup body?

UN: Resin is not ideal. While it’s cheap and easy to cast, it has low impact resistance—high-speed rotation vibrations may cause it to crack. ABS/PC plastic is better for its durability and machinability.

  1. Q: What should I do if the prototype leaks during the water test?

UN: D'abord, check the silicone sealing ring (replace if damaged). If the ring is intact, verify the sealing groove size (tolerance should be ±0.05mm). If the groove is too large, add a thin food-grade silicone pad to the cup body—this fix takes 1–2 hours and resolves most leakage issues.

Indice
Faire défiler vers le haut