Electric toys, with functions like movement, sound, et la lumière, rely heavily on high-precision prototypes to validate design and functionality. Usinage CNC stands out as a key method for creating these prototypes, ensuring complex structures and electronic integration work seamlessly. This article breaks down the full CNC machining process for electric toy prototypes, addressing common pain points for engineers and manufacturers.
1. Pré-masseur: Conception & Sélection des matériaux
A well-planned design and suitable materials are the foundation of a successful electric toy prototype. This stage focuses on aligning functionality with machining feasibility.
1.1 Demand Analysis & 3D Modélisation
Before 3D modeling, clarify core requirements to avoid rework. Then use professional software to create detailed models.
Demand Analysis Breakdown
Requirement Type | Détails clés | Impact sur l'usinage CNC |
Function Definition | Confirm functions (Par exemple, gear-driven movement, Lumières LED, sound modules); select core components (moteurs, batteurs, controllers) | Determines space reserved for components (Par exemple, motor slots, battery compartments) in machining |
Conception structurelle | Design appearance, pièces mécaniques (gear sets, joint moving parts), and electronic layout | Influences tool path planning (Par exemple, avoiding undercuts in joint structures) |
Normes de sécurité | Ensure no sharp edges; design anti-reverse battery structures | Requires precise chamfering (≤0,5 mm) and accurate slot dimensions during machining |
3D Modélisation & Engineering Drawing Tips
- Choix de logiciel: Utiliser Solide ou Et nx for 3D modeling—they support modular design, allowing decomposition of the toy into parts (coquille, transmission structure, electronic bracket) for step-by-step machining.
- Optimisation des détails:
- Reserve 2-3mm extra space for electronic components (Par exemple, battery compartments) to accommodate assembly gaps.
- Add anti-slip textures (profondeur: 0.2-0.3MM) on handles and snap structures (tolérance: ± 0,05 mm) for secure assembly.
1.2 Material Comparison for Core Components
Selecting the right material balances performance, coût, and machining ease.
Type de composant | Optional Materials | Avantages | Désavantage | Notes d'usinage |
Toy Shell | Plastique abs | Faible coût, Facile à machine, Bonne résistance à l'impact | Faible résistance à la chaleur (≤80°C) | Use high rotational speed (10,000-15,000 RPM) Pour éviter la fonte |
Plastique PC | Résistant à la chaleur (Jusqu'à 120 ° C), durable | Coût plus élevé, sujet aux fissures | Slow feed speed (150-200 mm / min) recommandé | |
Pièces de transmission (Engrenages, Arbres) | Alliage en aluminium (6061) | Forte résistance, léger | Needs anodization post-processing | Use coolant to prevent burrs |
Pom (Plastique d'ingénierie) | Self-lubricating, frottement faible | Low impact resistance | No coolant needed; finish with 800# papier de verre | |
Transparent Parts (Windows, Lights) | Acrylique | Transmission lumineuse élevée (≥92%), facile à polir | Fragile, prone to scratching | Use ball head cutter for smooth surfaces (Ra ≤ 0.8μm) |
2. CNC Machining Stage: Installation & Execution
This stage transforms raw materials into components, requiring careful machine selection, programmation, and precision control.
2.1 Machine-outil & Sélection d'outils
Choosing the right machine and tools ensures efficiency and accuracy.
Machining Need | Type de machine recommandé | Suitable Tools | Taille de l'outil (MM) | But |
Small Precision Parts (Shells, Engrenages) | Small CNC Engraving Machine (Par exemple, 3018 Pro) | Flat Bottom Cutter (Brouillage), Ball Head Cutter (Finition) | Φ4-8 (Brouillage), Φ2-4 (Finition) | Enlever l'excédent de matière; achieve smooth surfaces |
Complex Metal Parts (Drive Shafts) | Machining Center | Twist Drill, Taper Cutter | Φ3-6 (Percer), Φ5-8 (Taper) | Drill holes; create tapered joints |
2.2 Programmation & Optimisation du parcours d'outil
- G-Code Programming: Utiliser Mastercam ou Moulin électrique pour générer des parcours d'outils. Follow a two-step strategy:
- Usinage brutal: Retirer 80-90% of excess material with a flat bottom cutter—set depth of cut to 1-2mm per pass to save time.
- Finition: Use a ball head cutter for surfaces (Par exemple, coquilles de jouets) to ensure no knife marks—set depth of cut to 0.1-0.2mm.
- Parameter Setting for Common Materials:
Matériel | Rotational Speed (RPM) | Vitesse d'alimentation (mm / min) | Profondeur de coupe (MM) |
Plastique abs | 12,000 – 16,000 | 200 – 300 | 1.5 – 2.0 |
Alliage en aluminium (6061) | 8,000 – 12,000 | 100 – 150 | 1.0 – 1.5 |
Acrylique | 15,000 – 20,000 | 250 – 350 | 0.8 – 1.2 |
2.3 Machining Precautions
- Fixation & Positionnement:
- Use double-sided adhesive for plastic sheets (prevents surface damage) or clamps for metal blocks.
- For symmetrical parts (Par exemple, toy arms), Utiliser le “one side and two pins” method—position pins 5-10mm from edges to ensure ±0.05mm accuracy.
- Contrôle de précision:
- Maintain tolerance of ±0.1mm for plastic parts (Par exemple, coquille) et ±0.05mm for metal transmission parts (Par exemple, engrenages).
- Pour les structures à parois minces (thickness ≤1mm), add temporary supports during machining and remove them post-processing.
3. Post-traitement & Assemblée
Post-processing improves appearance and durability, while assembly verifies functionality.
3.1 Traitement de surface
Proper treatment enhances aesthetics and safety.
Composant | Surface Treatment Process | But | Paramètres |
Toy Shell (ABS/PC) | Ponçage (80#→2000#) + Spraying Matte Paint | Retirer les marques d'usinage; Empêcher les rayures | Sable en mouvements circulaires; paint thickness: 0.1-0.2MM |
Pièces en alliage d'aluminium | Nettoyage à ultrasons + Anodisation (Black/Silver) | Remove oil/chips; empêcher la rouille | Anodization layer thickness: 5-10µm |
Transparent Acrylic Parts | Polissage (1000#→3000# Sandpaper + Pâte de polissage) | Improve light transmittance; remove scratches | Polish until surface is mirror-like (Ra ≤ 0,2 μm) |
Logos/Patterns | Dépistage de la soie | Add brand logos or decorative patterns | Ink thickness: ≤0,05 mm; dry at 60°C for 30 minutes |
3.2 Electronic Integration & Assemblée
Follow a logical sequence to ensure components work together.
Assemblage étape par étape (Linear Narrative)
- Mechanical Assembly: First install gear sets and joint moving parts—test movement smoothness (no jamming when rotated 360°).
- Electronic Installation: Solder motors, batteurs, and controllers to the PCB board; fix the PCB to the CNC-machined bracket (use M2 screws, couple: 0.3 N · m).
- Shell Encapsulation: Attach the top and bottom shells with snaps or screws—check for gaps (≤0,1 mm) to prevent dust entry.
Liste de contrôle des tests fonctionnels
- Mechanical Function: Test motor speed (Par exemple, 500-1000 RPM for toy cars) and torque—adjust gear ratios if movement is too slow/fast.
- Electronic Function: Verify LED lights (no flickering) and sound modules (clear audio)—check circuit stability by running the toy continuously for 1 heure (no overheating >45°C).
- Safety Test: Inspect for sharp edges (use a feeler gauge: no protrusions >0.1mm) and test the anti-reverse battery structure (battery cannot be inserted backwards).
4. Post-traitement & Optimisation
Refine the prototype based on test results to prepare for small-batch production.
4.1 Apparence & Optimisation structurelle
- Appearance Repair: Fill small scratches (depth ≤0.1mm) with putty; use 3D printing to patch missing parts (Par exemple, broken snap structures).
- Structural Improvement:
- Lightweight Design: Add hollowed-out areas (diamètre: 3-5MM) in non-load-bearing parts (Par exemple, toy body) to reduce weight by 10-15%.
- Strength Enhancement: Add stiffeners (largeur: 1-2MM) to stressed parts (Par exemple, connecting shafts) or switch from plastic to aluminum alloy if cracks appear.
4.2 Small-Batch Validation
- Replica Production: If the prototype passes tests, utiliser silicone replica molds (vacuum pouring) pour faire 10-20 small-batch prototypes—this reduces CNC machining costs for repeated tests.
- Iterative Improvement: Adjust the design based on user feedback (Par exemple, modify gear tooth count if the toy is too noisy; increase battery compartment size for longer runtime).
Point de vue de la technologie Yigu
For CNC machining of electric toy prototypes, précision et sécurité sont non négociables. Yigu Technology suggests prioritizing modular design in the early stage—breaking the toy into small parts simplifies machining and reduces rework. Material selection should align with use cases: ABS is ideal for low-cost, non-heat-exposed shells, while aluminum alloy works best for high-stress transmission parts. Post-traitement, like acrylic polishing and aluminum anodization, not only improves aesthetics but also extends the prototype’s lifespan. Regarder vers l'avenir, as electric toys become more intelligent (Par exemple, adding sensors), CNC machining will need to handle smaller, more complex components—requiring tighter tolerances (± 0,03 mm) and advanced tooling like micro-mills.
FAQ
- What CNC machine is best for small electric toy prototypes (Par exemple, 5-10cm size)?
Small CNC engraving machines (Par exemple, 3018 Pro) sont idéaux. They offer high precision (± 0,01 mm), are cost-effective, and can handle small parts like toy shells and gears without occupying much space.
- How to prevent plastic parts from melting during CNC machining?
Use high rotational speeds (12,000-16,000 RPM pour ABS) and moderate feed speeds (200-300 mm / min). En plus, use compressed air to blow away chips and cool the material—avoiding heat buildup that causes melting.
- Why is “one side and two pins” positioning used for symmetrical toy parts?
This method ensures consistent accuracy across multiple prototypes. The fixed “one side” acts as a reference, while the two pins prevent lateral movement during machining—critical for symmetrical parts like toy arms, where even a 0.1mm misalignment can cause assembly issues (Par exemple, uneven joint movement).