Comment exécuter un usinage CNC pour des prototypes de jouets électriques?

4 usinage CNC d'axes

Jouets électriques, avec des fonctions comme le mouvement, son, et la lumière, s'appuyer fortement sur des prototypes de haute précision pour valider la conception et la fonctionnalité. L'usinage CNC s'impose comme une méthode clé pour créer ces prototypes, garantir que les structures complexes et l’intégration électronique fonctionnent de manière transparente. Cet article détaille le processus complet d'usinage CNC pour les prototypes de jouets électriques, traiter la douleur courante […]

Jouets électriques, avec des fonctions comme le mouvement, son, et la lumière, s'appuyer fortement sur des prototypes de haute précision pour valider la conception et la fonctionnalité. Usinage CNC stands out as a key method for creating these prototypes, garantir que les structures complexes et l’intégration électronique fonctionnent de manière transparente. Cet article détaille le processus complet d'usinage CNC pour les prototypes de jouets électriques, addressing common pain points for engineers and manufacturers.

1. Pre-Machining: Conception & Sélection des matériaux

A well-planned design and suitable materials are the foundation of a successful electric toy prototype. This stage focuses on aligning functionality with machining feasibility.

1.1 Demand Analysis & 3Modélisation D

Before 3D modeling, clarify core requirements to avoid rework. Then use professional software to create detailed models.

Demand Analysis Breakdown

Requirement TypeKey DetailsImpact on CNC Machining
Function DefinitionConfirm functions (par ex., gear-driven movement, LED lights, sound modules); select core components (moteurs, batteries, controllers)Determines space reserved for components (par ex., motor slots, battery compartments) in machining
Structural DesignDesign appearance, pièces mécaniques (gear sets, joint moving parts), and electronic layoutInfluences tool path planning (par ex., avoiding undercuts in joint structures)
Safety StandardsEnsure no sharp edges; design anti-reverse battery structuresRequires precise chamfering (≤0.5mm) and accurate slot dimensions during machining

3Modélisation D & Engineering Drawing Tips

  • Software Choice: Utiliser SolidWorks ou UG NX for 3D modeling—they support modular design, allowing decomposition of the toy into parts (shell, transmission structure, electronic bracket) for step-by-step machining.
  • Detail Optimization:
  • Reserve 2-3mm extra space for electronic components (par ex., battery compartments) to accommodate assembly gaps.
  • Add anti-slip textures (profondeur: 0.2-0.3mm) on handles and snap structures (tolérance: ±0,05 mm) for secure assembly.

1.2 Material Comparison for Core Components

Selecting the right material balances performance, coût, and machining ease.

Component TypeOptional MaterialsAvantagesDisadvantagesMachining Notes
Toy ShellPlastique ABSFaible coût, facile à usiner, bonne résistance aux chocsLow heat resistance (≤80°C)Use high rotational speed (10,000-15,000 RPM) pour éviter de fondre
PC PlasticRésistant à la chaleur (jusqu'à 120°C), durableCoût plus élevé, prone to crackingSlow feed speed (150-200 mm/min) recommended
Pièces de transmission (Engrenages, Arbres)Alliage d'aluminium (6061)Haute résistance, légerNeeds anodization post-processingUse coolant to prevent burrs
POM (Plastique technique)Self-lubricating, faible frictionLow impact resistanceNo coolant needed; finish with 800# papier de verre
Transparent Parts (Windows, Lights)AcryliqueHigh light transmittance (≥92%), easy to polishFragile, prone to scratchingUse ball head cutter for smooth surfaces (Ra ≤ 0.8μm)

2. CNC Machining Stage: Installation & Execution

This stage transforms raw materials into components, requiring careful machine selection, programmation, and precision control.

2.1 Machine Tool & Sélection d'outils

Choosing the right machine and tools ensures efficiency and accuracy.

Machining NeedRecommended Machine TypeSuitable ToolsTool Size (mm)But
Small Precision Parts (Shells, Engrenages)Small CNC Engraving Machine (par ex., 3018 Pro)Flat Bottom Cutter (Roughing), Ball Head Cutter (Finition)Φ4-8 (Roughing), Φ2-4 (Finition)Remove excess material; achieve smooth surfaces
Complex Metal Parts (Drive Shafts)Machining CenterTwist Drill, Taper CutterΦ3-6 (Drill), Φ5-8 (Taper)Drill holes; create tapered joints

2.2 Programmation & Toolpath Optimization

  • G-Code Programming: Utiliser Mastercam ou PowerMill to generate toolpaths. Follow a two-step strategy:
  1. Usinage grossier: Remove 80-90% of excess material with a flat bottom cutter—set depth of cut to 1-2mm per pass to save time.
  2. Finition: Use a ball head cutter for surfaces (par ex., toy shells) to ensure no knife marks—set depth of cut to 0.1-0.2mm.
  • Parameter Setting for Common Materials:
MatérielRotational Speed (RPM)Feed Speed (mm/min)Depth of Cut (mm)
Plastique ABS12,000 – 16,000200 – 3001.5 – 2.0
Alliage d'aluminium (6061)8,000 – 12,000100 – 1501.0 – 1.5
Acrylique15,000 – 20,000250 – 3500.8 – 1.2

2.3 Machining Precautions

  • Fixing & Positionnement:
  • Use double-sided adhesive for plastic sheets (prevents surface damage) or clamps for metal blocks.
  • For symmetrical parts (par ex., toy arms), use the “one side and two pins” method—position pins 5-10mm from edges to ensure ±0.05mm accuracy.
  • Contrôle de précision:
  • Maintain tolerance of ±0.1mm for plastic parts (par ex., coquilles) et ±0.05mm for metal transmission parts (par ex., engrenages).
  • For thin-walled structures (thickness ≤1mm), add temporary supports during machining and remove them post-processing.

3. Post-traitement & Assemblée

Post-processing improves appearance and durability, while assembly verifies functionality.

3.1 Traitement de surface

Proper treatment enhances aesthetics and safety.

ComponentSurface Treatment ProcessButParameters
Toy Shell (ABS/PC)Ponçage (80#→2000#) + Spraying Matte PaintSupprimer les marques d'usinage; prevent scratchesSand in circular motions; paint thickness: 0.1-0.2mm
Aluminum Alloy PartsUltrasonic Cleaning + Anodization (Black/Silver)Remove oil/chips; prevent rustAnodization layer thickness: 5-10µm
Transparent Acrylic PartsPolissage (1000#→3000# Sandpaper + Polishing Paste)Improve light transmittance; remove scratchesPolish until surface is mirror-like (Ra ≤ 0.2μm)
Logos/PatternsSérigraphieAdd brand logos or decorative patternsInk thickness: ≤0,05 mm; dry at 60°C for 30 minutes

3.2 Electronic Integration & Assemblée

Follow a logical sequence to ensure components work together.

Step-by-Step Assembly (Linear Narrative)

  1. Mechanical Assembly: First install gear sets and joint moving parts—test movement smoothness (no jamming when rotated 360°).
  2. Electronic Installation: Solder motors, batteries, and controllers to the PCB board; fix the PCB to the CNC-machined bracket (use M2 screws, couple: 0.3 N·m).
  3. Shell Encapsulation: Attach the top and bottom shells with snaps or screws—check for gaps (≤0.1mm) to prevent dust entry.

Functional Testing Checklist

  • Mechanical Function: Test motor speed (par ex., 500-1000 RPM for toy cars) and torque—adjust gear ratios if movement is too slow/fast.
  • Electronic Function: Verify LED lights (no flickering) and sound modules (clear audio)—check circuit stability by running the toy continuously for 1 heure (no overheating >45°C).
  • Safety Test: Inspect for sharp edges (use a feeler gauge: no protrusions >0.1mm) and test the anti-reverse battery structure (battery cannot be inserted backwards).

4. Post-traitement & Optimisation

Refine the prototype based on test results to prepare for small-batch production.

4.1 Apparence & Structural Optimization

  • Appearance Repair: Fill small scratches (depth ≤0.1mm) with putty; use 3D printing to patch missing parts (par ex., broken snap structures).
  • Structural Improvement:
  • Lightweight Design: Add hollowed-out areas (diamètre: 3-5mm) in non-load-bearing parts (par ex., toy body) to reduce weight by 10-15%.
  • Strength Enhancement: Add stiffeners (largeur: 1-2mm) to stressed parts (par ex., connecting shafts) or switch from plastic to aluminum alloy if cracks appear.

4.2 Small-Batch Validation

  • Replica Production: If the prototype passes tests, utiliser silicone replica molds (vacuum pouring) to make 10-20 small-batch prototypes—this reduces CNC machining costs for repeated tests.
  • Iterative Improvement: Adjust the design based on user feedback (par ex., modify gear tooth count if the toy is too noisy; increase battery compartment size for longer runtime).

Yigu Technology’s Viewpoint

For CNC machining of electric toy prototypes, precision and safety ne sont pas négociables. Yigu Technology suggests prioritizing modular design in the early stage—breaking the toy into small parts simplifies machining and reduces rework. Material selection should align with use cases: ABS is ideal for low-cost, non-heat-exposed shells, while aluminum alloy works best for high-stress transmission parts. Post-traitement, like acrylic polishing and aluminum anodization, not only improves aesthetics but also extends the prototype’s lifespan. Looking ahead, as electric toys become more intelligent (par ex., adding sensors), CNC machining will need to handle smaller, more complex components—requiring tighter tolerances (±0,03 mm) and advanced tooling like micro-mills.

FAQ

  1. What CNC machine is best for small electric toy prototypes (par ex., 5-10cm size)?

Small CNC engraving machines (par ex., 3018 Pro) are ideal. They offer high precision (±0,01mm), are cost-effective, and can handle small parts like toy shells and gears without occupying much space.

  1. How to prevent plastic parts from melting during CNC machining?

Use high rotational speeds (12,000-16,000 RPM for ABS) and moderate feed speeds (200-300 mm/min). En plus, use compressed air to blow away chips and cool the material—avoiding heat buildup that causes melting.

  1. Why is “one side and two pins” positioning used for symmetrical toy parts?

This method ensures consistent accuracy across multiple prototypes. The fixed “one side” acts as a reference, while the two pins prevent lateral movement during machining—critical for symmetrical parts like toy arms, where even a 0.1mm misalignment can cause assembly issues (par ex., uneven joint movement).

Indice
Faire défiler vers le haut