Comment fabriquer des modèles prototypes de plats de cuisson électriques par usinage CNC de haute précision?

moulage par injection de résine d'urée-formaldéhyde

Un modèle de prototype de plat de cuisson électrique bien exécuté, usiné CNC, est la pierre angulaire du développement du produit : il valide l'esthétique de la conception., teste les performances de chauffage, et garantit la fiabilité structurelle avant la production en série. Cet article décompose systématiquement tout le processus de création, de la conception préliminaire aux tests fonctionnels finaux, utiliser des comparaisons claires, directives étape par étape, et des solutions pratiques pour résoudre les problèmes courants […]

A well-executed CNC machining electric baking pan prototype model is a cornerstone of product development—it validates design aesthetics, teste les performances de chauffage, et garantit la fiabilité structurelle avant la production en série. Cet article décompose systématiquement tout le processus de création, de la conception préliminaire aux tests fonctionnels finaux, utiliser des comparaisons claires, directives étape par étape, et des solutions pratiques pour relever les défis communs, helping you build a prototype that balances precision, fonctionnalité, and market readiness.

1. Préparation préliminaire: Lay the Groundwork for Prototype Success

Preliminary preparation directly determines the prototype’s accuracy and usability. It focuses on two core tasks: 3Modélisation D & detail design et sélection des matériaux, both tailored to the unique needs of electric baking pans (par ex., résistance à la chaleur, even heat distribution, user safety).

1.1 3Modélisation D & Key Detail Design

Use professional CAD software (par ex., SolidWorks, UG, Rhinocéros) to create a comprehensive 3D model of the electric baking pan. The model must cover all components and prioritize critical details to avoid machining errors:

  • Component Breakdown: Split the baking pan into independent parts like the upper cover, baking tray body, heating plate, thermostat mount, handle, et base for easier machining and assembly.
  • Key Design Focus Areas:
  • Baking Tray Shape: Define dimensions (par ex., rond: φ28–32cm; carré: 25×25cm) and thickness distribution (1.5–2mm for uniform heating) with a tolerance of ±0.05mm.
  • Heating Element Layout: Mark positions for heating pipes/plates (even spacing to ensure ±5°C temperature variation) and reserve grooves for wire routing.
  • Assembly Interfaces: Design fitting structures (par ex., buckles for upper cover-base connection, screw holes for handle mounting) with clear tolerance requirements (±0,1mm).
  • Surface Features: Add anti-slip patterns (profondeur: 0.3–0.5mm) on handles, brand logo embossments (hauteur: 0.8–1mm), and button grooves (to fit control knobs).

Why focus on these details? A poorly designed heating element layout can cause 30% uneven heating, while imprecise assembly interfaces may lead to loose upper covers—requiring rework that adds 2–3 days to the timeline.

1.2 Sélection des matériaux: Match Materials to Component Functions

Different components of the electric baking pan need materials with specific properties (par ex., heat conductivity for heating plates, insulation for handles). The table below compares the most suitable materials:

Type de matériauAvantages clésIdeal ComponentsFourchette de coût (par kg)Usinabilité
Acier inoxydable (304/316)Résistance aux hautes températures (up to 800°C), résistant à la corrosionBaking tray body, heating plate\(15–)22Modéré (needs coolant to prevent sticking)
Alliage d'aluminium (6061)Excellente conductivité thermique (167 W/m·K), légerDissipateurs de chaleur, garniture décorative\(6–)10Excellent (fast cutting, low tool wear)
Plastique ABSHaute résistance aux chocs, easy to shapeUpper cover, handle, base housing\(3–)6Bien (low cutting resistance, pas de bavures)
PC (Polycarbonate)Transparent, résistant à la chaleur (jusqu'à 135°C)Viewing windows (for monitoring food)\(8–)12Modéré (requires high-speed cutting to avoid cracking)
Caoutchouc de siliconeRésistant à la chaleur, waterproofSealing rings (between upper cover and tray)\(9–)13N / A (moulé, not CNC-machined)

Exemple: The heating plate, needing efficient heat transfer, utilise alliage d'aluminium. The baking tray body, requiring corrosion resistance for food contact, is made of 304 acier inoxydable.

2. Processus d'usinage CNC: Turn Design into Physical Components

The CNC machining phase follows a linear workflow—programmation & toolpath planning → workpiece clamping → roughing & finition—with special attention to electric baking pan-specific structures (par ex., curved tray surfaces, heating element grooves).

2.1 Programmation & Toolpath Planning

Import the 3D model into CAM software (par ex., Mastercam, PowerMill) to generate toolpaths and G-code. Key steps include:

  1. Cutting Parameter Setting (by Material):
  • Acier inoxydable: Speed = 800–2000 rpm; Feed = 0.05–0.1mm/tooth; Cutting depth = 0.3–1mm (use carbide tools).
  • Alliage d'aluminium: Speed = 3000–6000 rpm; Feed = 0.1–0.2mm/tooth; Cutting depth = 1–2mm (use high-speed steel tools).
  • Plastiques (ABS/PC): Speed = 1500–3000 rpm; Feed = 0.08–0.15mm/tooth; Cutting depth = 0.5–1mm (use coolant for PC to prevent softening).
  1. Sélection d'outils:
  • Roughing: Use 8–16mm diameter end mills/face mills to remove 80–90% of excess material.
  • Finition: Use 2–6mm diameter ball nose mills (for curved tray surfaces) or fine boring cutters (for thermostat mount holes).
  • Special Structures: Utiliser five-axis machining for complex curved trays (avoids tool interference) et GED (Usinage par électroérosion) for heating element grooves (ensures positional accuracy ±0.03mm).

2.2 Workpiece Clamping & Exécution de l'usinage

Proper clamping prevents deformation and ensures precision. The table below outlines clamping methods for different components:

Component TypeMatérielClamping MethodKey Precautions
Baking Tray BodyAcier inoxydableFlat pliers + support blocksAdd anti-slip pads to avoid surface scratches; ensure flatness during clamping
Heating PlateAlliage d'aluminiumVacuum adsorption platformEven pressure distribution to prevent thin-wall deformation
Upper CoverPlastique ABSCustom soft clawsReduce clamping force (≤50N) to avoid cracking
HandlePlastique ABSIndexing headAlign with pre-marked hole positions for accurate drilling

Machining Execution Tips:

  • For curved baking trays: Utiliser spiral layered milling (0.5mm per layer) to ensure smooth surfaces (Râ <0.8µm).
  • For heating element grooves: After CNC milling, polish the bottom plane to Ra <0.4µm (reduces thermal conduction resistance).
  • Pour pièces en plastique: Utiliser grande vitesse, low-feed cutting (par ex., ABS: 2500 tr/min, 0.1mm/tooth) to avoid melt sticking to tools.

3. Post-traitement & Assemblée: Enhance Performance & Esthétique

Post-processing removes machining flaws and prepares components for assembly, while careful assembly ensures the prototype functions safely and smoothly.

3.1 Post-traitement

  • Metal Parts:
  • Acier inoxydable: Sandblast (matte texture) or electropolish (haute brillance) to remove tool marks; apply food-grade anti-rust oil.
  • Alliage d'aluminium: Anodize (color options: black/silver) pour la résistance à la corrosion; hard oxidize (épaisseur: 5–10μm) pour la résistance à l'usure.
  • Plastic Parts:
  • ABS/PC: Paint (matte/glossy) or UV print (logos de marque, operation instructions); laser engrave graduation lines (for temperature knobs) with 0.1mm depth.
  • Sealing Rings: Clean with food-grade disinfectant and apply high-temperature adhesive (for bonding to upper cover grooves).

3.2 Step-by-Step Assembly

  1. Pre-Assembly Check: Verify all components meet dimensional standards (par ex., baking tray flatness ≤0.1mm, handle hole alignment ±0.05mm).
  2. Core Component Assembly:
  • Attach the heating plate to the baking tray body using M3 screws (couple: 1.5–2.0 N·m); seal with silicone gaskets to prevent heat loss.
  • Install the thermostat into its mount (threaded connection) and connect wires to the power interface (use heat-shrinkable tubes for insulation).
  1. Final Assembly:
  • Fasten the upper cover to the base via buckles (ensure 0.5–1mm gap for easy opening/closing).
  • Mount the handle to the upper cover (screw fixing, couple: 1.0–1.2 N·m) and install control knobs into button grooves.

4. Tests fonctionnels & Problem Troubleshooting

Testing validates the prototype’s performance, while troubleshooting resolves common issues to ensure reliability.

4.1 Functional Testing Checklist

Test the prototype in four key areas to validate performance:

Test CategoryTools/MethodsPass Criteria
Heating PerformanceThermocouple, temperature data loggerReaches 200°C within 5–8 minutes; temperature variation ≤±5°C across the tray
Contrôle de la températureMultimeter, manual knob adjustmentShuts off at set temperature (par ex., 180°C) and restarts at 160°C; no overheating
SafetyInfrared thermometer, pull testHandle temperature <40°C after 30 minutes of use; handle resists 5kg pull force
SealingWater filling (tray 50% full)No water leakage from upper cover-tray junction after 10 minutes

4.2 Common Problems & Solutions

ProblèmeCauseSolution
Baking tray flatness exceeding standard (>0.1mm)Clamping deformation, usure des outilsAdd support blocks during clamping; replace with new carbide tools
Large gap between heating plate and thermostatPositional errors, tolerance accumulationUse jigs for precise thermostat mounting; optimize machining sequence
ABS upper cover crackingResidual stress, aggressive cutting parametersAnneal plastic before machining (80°C pour 2 heures); reduce feed rate to 0.08mm/tooth
Heat dissipation hole burrsDull drill bits, improper retractionReplace with new high-speed steel drills; optimize retraction path (arc retraction)

Yigu Technology’s Perspective

Chez Yigu Technologie, we see CNC machining electric baking pan prototype models as aperformance validator—they bridge design concepts and mass production while ensuring user safety. Our team prioritizes two core aspects: precision and heat efficiency. For critical parts like heating plates, we use aluminum alloy with five-axis machining to ensure thermal conductivity uniformity (±3% variation). Pour pièces en contact avec les aliments, we strictly select 304 stainless steel and apply food-grade post-processing. We also integrate 3D scanning post-machining to verify dimensional accuracy (tolerance ±0.03mm). By focusing on these details, we help clients reduce post-production defects by 25–30% and cut time-to-market by 1–2 weeks. Whether you need an appearance prototype for exhibitions or a functional one for testing, we tailor solutions to meet global safety standards.

FAQ

  1. Q: How long does it take to produce a CNC machining electric baking pan prototype model?

UN: Typically 7–10 working days. This includes 1–2 days for 3D programming, 2–3 days for CNC machining, 1–2 days for post-processing, 1–2 days for assembly, et 1 day for testing & dépannage.

  1. Q: Can I use PC plastic instead of stainless steel for the baking tray body?

UN: It’s not recommended. PC plastic has lower heat resistance (max 135°C) and may deform under long-term baking (180–220°C). Acier inoxydable (304/316) can withstand high temperatures and resist food acid corrosion, making it the only safe choice for the tray body.

  1. Q: What should I do if the prototype has uneven heating across the baking tray?

UN: D'abord, check the heating element layout (ensure even spacing between pipes/plates). If the layout is correct, verify the heating plate flatness (should be ≤0.1mm). If uneven, re-machine the heating plate with a precision grinder to restore flatness—this fix takes 1–2 hours and resolves most heating uniformity issues.

Indice
Faire défiler vers le haut