Modèle d'usinage de tour de type suisse de haute précision: Un guide complet

moulage sous pression en chambre froide

Le tour de type suisse de haute précision change la donne pour l'usinage de petites, pièces complexes : pensez à des composants aussi petits que 0.5 mm de diamètre avec des tolérances aussi serrées que ±0,001 mm. Contrairement aux tours conventionnels, il utilise une douille de guidage pour soutenir la pièce, minimisant les vibrations et permettant une précision inégalée. Que vous fabriquiez des aiguilles médicales ou des attaches aérospatiales, maîtriser […]

Le tour de type suisse de haute précision change la donne pour l'usinage de petites, pièces complexes : pensez à des composants aussi petits que 0.5 mm de diamètre avec des tolérances aussi serrées que ±0,001 mm. Contrairement aux tours conventionnels, it uses a douille de guidage to support the workpiece, minimisant les vibrations et permettant une précision inégalée. Que vous fabriquiez des aiguilles médicales ou des attaches aérospatiales, mastering the Swiss-type lathe machining model is key to producing consistent, pièces de haute qualité. This guide breaks down every critical aspect, from machine structure to real-world applications, to help you avoid common mistakes and maximize efficiency.

1. Machine Structure and Components: The Backbone of Precision

A Swiss-type lathe’s unique design is what sets its precision apart. Every component works together to keep the workpiece stable and the cutting process controlled. Here’s a detailed look at the core parts:

ComponentFunctionKey Precision Features
Swiss-type lathe (Main Body)Houses all components; provides a stable base for machining.Heavy-duty cast iron frame reduces vibration (vibration amplitude ≤0.0005 mm).
BrocheRotates the workpiece at high speeds.High-speed spindle (jusqu'à 10,000 tr/min) with runout ≤0.0003 mm; ensures uniform rotation.
Guide bushingSupports the workpiece near the cutting tool (the “secret” to Swiss-type precision).Precision-ground bushing (inner diameter tolerance ±0.0002 mm); minimizes workpiece deflection.
Tool turretHolds multiple cutting tools (tournant, fraisage, forage) for quick changes.8-12 station turret with tool positioning accuracy ±0.0005 mm; reduces setup time.
TailstockSupports the far end of long workpieces (par ex., 300 mm shafts).Adjustable tailstock center with concentricity ≤0.0005 mm; prevents workpiece bending.
Slide systemMoves the tool turret or workpiece along X, Oui, Axes Z.Linear guideways (instead of dovetail slides) with positioning accuracy ±0.0002 mm; lisse, precise movement.

Quick Analogy: Think of the douille de guidage as training wheels for a bike—it keeps the workpiece (like a bike) stable when moving fast, so the cutting tool (like a rider) can make precise “turns” without wobbling. Sans ça, long, thin workpieces would bend, ruining accuracy.

2. Machining Processes and Techniques: Turning Small Parts with Big Precision

Swiss-type lathes excel at “done-in-one” machining—completing all operations (tournant, fraisage, forage) in a single setup. This eliminates errors from repositioning the workpiece. Below are the key processes and how to use them effectively:

Core Processes & Meilleures pratiques

  • Tournant: The primary process for shaping cylindrical surfaces (par ex., arbres, épingles).

Tip: Utiliser de l'acier rapide (HSS) or carbide inserts. For stainless steel parts (common in medical devices), set spindle speed to 5,000-8,000 rpm and feed rate to 0.01-0.02 mm/rev—this reduces tool wear and ensures a smooth surface.

  • Fraisage: Adds flat or angled features (par ex., slots in electronic connectors).

Tip: Use a live tool turret (rotates the milling tool) for 4-axis machining. For small slots (largeur <1 mm), use a 0.8 mm diameter end mill and cut in 0.1 mm depth increments to avoid breaking the tool.

  • Forage: Creates small holes (jusqu'à 0.1 mm diamètre) in parts like fuel injector nozzles.

Tip: Use carbide drills with a 135° point angle—they cut cleanly without wandering. Add a coolant mist system to keep the drill cool (prevents overheating and breakage).

  • Threading: Produces precise threads (par ex., M1.0 x 0.25 threads for electronics).

Tip: Use single-point threading tools. For fine threads, set spindle speed to 3,000-4,000 rpm and thread depth to 0.613 x pitch (per ISO standards) to avoid thread damage.

  • Parting: Cuts the finished part from the raw material bar.

Tip: Use a parting tool with a width equal to 1.5x the workpiece diameter. For a 5 mm diameter part, use a 7.5 mm wide tool—this prevents the part from “pinching” the tool during cutting.

  • Affûtage: Optional process for ultra-smooth surfaces (par ex., bearing races with Ra ≤0.02 μm).

Tip: Use a built-in grinding spindle (if your lathe has one). Set grinding wheel speed to 12,000 rpm and feed rate to 0.005 mm/rev for best results.

Étude de cas: A medical device manufacturer needed to make a 2 mm diameter needle with a 0.5 mm hole and Ra 0.1 μm surface finish. Using a Swiss-type lathe, they: 1) Turned the outer diameter (vitesse de broche 8,000 tr/min); 2) Drilled the hole (carbide drill, 6,000 tr/min); 3) Ground the surface (12,000 tr/min). All operations were done in one setup, résultant en 99.5% partie (taux de réussite)—up from 85% with conventional lathes.

3. Precision Control and Measurement: Keeping Tolerances Tight

In Swiss-type lathe machining, even a 0.001 mm error can make a part useless (par ex., a medical needle that’s too thick won’t fit in a syringe). Precision control and measurement are non-negotiable. Here’s how to ensure your parts meet specs:

Key Control & Measurement Steps

AspectActions to TakeTools Used
ToléranceSet tolerances based on part use: – Dispositifs médicaux: ±0.0005-±0.001 mm – Fixations aérospatiales: ±0.001-±0.002 mm – Électronique: ±0.002-±0.005 mmFollow ISO 286-1 (tolerance standard) to define limits.
PrécisionCalibrate the lathe monthly: – Check spindle runout with a dial indicatorVerify slide positioning with a laser interferometerAdjust guide bushing concentricity if neededLaser interferometer (accuracy ±0.0001 mm); dial indicator (résolution 0.0001 mm).
Finition superficielleMonitor Ra value during machining: – For functional parts: Râ 0.2-1.6 µm – For appearance parts: Râ 0.02-0.2 µmSurface roughness meter (résolution 0.001 µm); check every 10 parties.
Contrôle de qualitéImplement in-process inspection: – Après avoir tourné: Check outer diameter with a micrometer – Après forage: Verify hole size with a pin gaugeAfter final machining: Do a full inspection with a CMMMicromètre numérique (accuracy ±0.0001 mm); jauges à broches (tolerance ±0.0002 mm); Machine de mesure de coordonnées (MMT) (3D accuracy ±0.0005 mm).

Question: Why do my parts have inconsistent tolerances (some ±0.001 mm, some ±0.002 mm)?

Answer: Most likely, le douille de guidage is worn or dirty. Clean the bushing with a lint-free cloth and check its inner diameter—if it’s worn by 0.0005 mm or more, replace it. Also, ensure the workpiece bar is straight (deflection ≤0.001 mm/m) — bent bars cause uneven cutting.

4. Applications and Industries: Where Swiss-Type Lathes Shine

Swiss-type lathes are the go-to for small, pièces de haute précision. Their ability to handle complex operations in one setup makes them indispensable in these industries:

Industry-Specific Uses

  • Dispositifs médicaux: Machines parts like hypodermic needles (0.5-2 mm diamètre), implants dentaires (tolerance ±0.001 mm), and surgical tool components. The guide bushing ensures parts are straight and precise—critical for patient safety.
  • Aérospatial: Produces small fasteners (par ex., M2 x 0.4 fils de discussion), injecteurs de carburant (0.1 trous mm), and sensor components. Tolerances as tight as ±0.0005 mm ensure parts work in extreme conditions (high altitude, température).
  • Électronique: Makes connector pins (1-3 mm diamètre), composants de circuits imprimés, and smartphone camera parts. The “done-in-one” process reduces lead time—key for fast-paced electronics manufacturing.
  • Automobile: Creates fuel system parts (par ex., tiges de valve), composants de transmission, and sensor pins. Production en grand volume (jusqu'à 10,000 parties/jour) is possible with Swiss-type lathes.
  • Mechanical engineering: Builds precision gears (module ≤0.5), small shafts, and bearing races. The slide system’s accuracy ensures gear teeth mesh perfectly.
  • Instruments de précision: Makes watch parts (par ex., balance wheels, 1-2 mm diamètre), microscope components, and measuring tool bits. Surface finish Ra ≤0.05 μm is standard for these high-end parts.

Fun Fact: A single Swiss-type lathe can make 5,000-10,000 small parts per day—enough to supply 10,000 smartphones with connector pins or 5,000 medical syringes with needles.

5. Software and Simulation: Optimizing Before Cutting

Modern Swiss-type lathes rely on software to streamline programming and avoid costly mistakes. CAD/CAM software and simulation tools let you test the machining process virtually—no need to waste material on trial runs.

Key Software Tools & Their Roles

Software TypeButExemplesAvantages
GOUJAT (Conception Assistée par Ordinateur)Creates 3D models of the part.SolidWorks, Fusion 360Lets you design complex features (par ex., 0.1 mm slots) with precise dimensions; exports files to CAM software.
CAME (Fabrication assistée par ordinateur)Converts CAD models into machine-readable code (Code G).Mastercam Suisse, GibbsCAMAutomatically generates toolpaths for turning, fraisage, forage; optimizes cutting parameters (vitesse de broche, vitesse d'avance).
Simulation softwareTests the machining process virtually.Vericut, NX CAM SimulationCatches collisions (par ex., tool hitting guide bushing), identifies inefficient toolpaths, and predicts part accuracy.
ProgrammationEdits G-code (si nécessaire) for custom operations.Mach3, Fanuc Manual Guide iAllows fine-tuning of toolpaths (par ex., adjusting thread depth for hard materials).

How to Use Software for Better Results

  1. Étape 1: Design with CAD: Create a 3D model of the part, adding all features (trous, machines à sous, fils de discussion) with exact tolerances (par ex., ±0.001 mm for a medical needle).
  2. Étape 2: Generate Toolpaths with CAM: Import the CAD model into CAM software. Select the Swiss-type lathe as the machine, then choose the processes (turning → drilling → milling). The software will generate G-code.
  3. Étape 3: Simulate: Run the G-code in simulation software. Check for:
  • Collisions (par ex., milling tool hitting tailstock)
  • Short shots (par ex., drill not reaching full depth)
  • Overcuts (par ex., turning tool removing too much material)
  1. Étape 4: Adjust and Run: Fix any issues in the simulation (par ex., reposition the tool), then send the G-code to the lathe.

Exemple: A manufacturer was struggling with broken drills when making 0.2 trous mm. They used simulation software and found the drill was moving too fast (vitesse d'avance 0.02 mm/rev). By reducing the feed rate to 0.005 mm/rev in the CAM software, they eliminated drill breakage—saving $5,000/month in tool costs.

Yigu Technology’s View

Chez Yigu Technologie, we believe high-precision Swiss-type lathe machining thrives on “synergy”—of stable machine components, smart processes, et logiciel. We equip our Swiss-type lathes with ultra-precise guide bushings (≤0.0002 mm tolerance) and linear guideways for accuracy. For clients in medical/aerospace, we pair CAD/CAM (SolidWorks + Mastercam Suisse) with in-process CMM checks to hit ±0.0005 mm tolerances. We also train teams to optimize toolpaths via simulation, cutting trial runs by 70%. Our goal: turn small, complex part challenges into reliable, des solutions rentables.

FAQs

  1. Q: What’s the difference between a Swiss-type lathe and a conventional lathe?

UN: A Swiss-type lathe uses a douille de guidage to support the workpiece near the cutting tool (ideal for small, long parts ≤20 mm diameter). A conventional lathe holds the workpiece at both ends (better for larger parts >20 mm diamètre). Swiss-type lathes also offer “done-in-one” machining, while conventional lathes often need multiple setups.

  1. Q: How to choose the right tool for Swiss-type lathe machining?

UN: Pour les matériaux souples (aluminium, plastique), use HSS tools (abordable, pointu). Pour matériaux durs (acier inoxydable, titane), use carbide tools (résistant à la chaleur, long-lasting). For tiny features (≤1 mm), use micro-tools (par ex., 0.1 forets en carbure de mm) with a rigid tool holder to prevent bending.

  1. Q: Can Swiss-type lathes machine non-cylindrical parts?

UN: Oui! With a live tool turret and 4/5-axis capability, they can mill flat surfaces, machines à sous, and even 3D features (par ex., curved medical implant heads). Use CAM software to generate complex toolpaths, and simulation to test for collisions.

Indice
Faire défiler vers le haut