Acier de cémentation EN 16MnCr5: Propriétés, Applications & Guide de fabrication

Fabrication de pièces métalliques sur mesure

Si vous avez besoin d'un acier qui équilibre un dur, surface résistante à l'usure avec un noyau robuste, parfaite pour les engrenages, arbres, ou arbres à cames : l'acier de cémentation EN 16MnCr5 est votre solution. En tant qu'alliage standard européen, il excelle en cémentation(carburation), ce qui le rend idéal pour les personnes très stressées, pièces mobiles. Ce guide détaille tout ce que vous devez savoir, de sa chimie à […]

Si vous avez besoin d'un acier qui équilibre un dur, surface résistante à l'usure avec un noyau robuste, parfaite pour les engrenages, arbres, or camshafts—EN 16MnCr5 case hardening steel est ta solution. En tant qu'alliage standard européen, it excels incase hardening (carburation), ce qui le rend idéal pour les personnes très stressées, pièces mobiles. Ce guide détaille tout ce que vous devez savoir, from its chemistry to real-world success stories, to help you use it effectively.

1. Material Properties of EN 16MnCr5 Case Hardening Steel

EN 16MnCr5’s performance is defined by its suitability for case hardening, all compliant withDANS 10084 (European standard for case hardening steels). Explorons ses propriétés clés en détail.

1.1 Composition chimique

The alloy’s elements work together to enable deep case hardening while keeping the core tough. Below is the standard composition range:

ÉlémentSymboleComposition Range (%)Key Role in the Alloy
Carbone (C)C0.14 – 0.19Low carbon content allows deepcase hardening (forms a hard outer layer without making the core brittle)
Manganèse (Mn)Mn1.00 – 1.30Boostetrempabilité etusinabilité; strengthens the core during heat treatment
Chrome (Cr)Cr0.80 – 1.10Améliorerésistance à l'usure of the case; improves corrosion resistance and carburizing uniformity
Silicium (Et)Et0.15 – 0.35Agit comme désoxydant lors de la fabrication de l'acier; prevents oxidation during heat treatment
Soufre (S)S≤ 0.035Kept low to avoid cracking in case-hardened parts and high-stress applications
Phosphore (P.)P.≤ 0.035Limité pour éviter la fragilité au froid (fracture in low-temperature environments)
Nickel (Dans)Dans≤ 0.30Trace amounts slightly improverésistance aux chocs without increasing cost
Molybdène (Mo)Mo≤ 0.10Minimal content; small amounts enhance high-temperature stability
Vanadium (V)V≤ 0.05Tiny amounts refine grain structure for uniformcase hardness and core strength

1.2 Propriétés physiques

These traits determine how EN 16MnCr5 behaves in manufacturing and real-world use:

  • Densité: 7.85 g/cm³ (consistent with most ferrous alloys, easy to integrate into existing designs)
  • Point de fusion: 1420 – 1450°C (high enough for forger and high-temperature applications like engine camshafts)
  • Conductivité thermique: 44 Avec(m·K) à 20°C (retains heat evenly during case hardening, ensuring uniform case depth)
  • Capacité thermique spécifique: 465 J/(kg·K) à 20°C (absorbs heat steadily, avoiding warping during heat treatment)
  • Coefficient de dilatation thermique: 12.3 µm/(m·K) (faible expansion, critical for precision parts like gear teeth)
  • Propriétés magnétiques: Ferromagnétique (attire les aimants, useful for magnetic clamping during machining)

1.3 Propriétés mécaniques

EN 16MnCr5’s full potential is unlocked aftercarburation + trempe + trempe (standard case hardening process). Vous trouverez ci-dessous les valeurs typiques (tested to EN standards):

PropriétéValeur typique (After Case Hardening)Norme d'essai (DANS)
Résistance à la traction≥ 900 MPaEN ISO 6892-1
Limite d'élasticité≥ 650 MPaEN ISO 6892-1
Élongation≥ 12%EN ISO 6892-1
Réduction de superficie≥ 45%EN ISO 6892-1
Case hardness58 – 62 CRH (Rockwell C.)EN ISO 6508-1
Core hardness28 – 32 CRH (Rockwell C.)EN ISO 6508-1
Dureté (Brinell)270 – 310 HB (cœur)EN ISO 6506-1
Résistance aux chocs≥ 60 J. (-20°C, cœur)EN ISO 148-1
Résistance à la fatigue~500 MPaEN ISO 13003
Case hardening depth0.8 – 1.2 mm (typical)EN ISO 3754

1.4 Autres propriétés

  • Résistance à la corrosion: Modéré (resists mild moisture and industrial oils; use zinc plating or paint for outdoor/humid environments)
  • Résistance à l'usure: Excellent (grâce à case hardness 58–62 HRC; ideal for moving parts like gears or pinions)
  • Usinabilité: Bien (soft in annealed state—180–220 HB—so cutting tools last longer; use HSS or carbide tools with cutting fluid)
  • Soudabilité: Acceptable (préchauffer à 250 – 300°C and post-weld anneal to avoid cracking; utiliser des électrodes à faible teneur en hydrogène)
  • Trempabilité: Very good (carburizing penetrates deeply, ensuring a uniform hard case even on thick parts like heavy-duty shafts)

2. Applications of EN 16MnCr5 Case Hardening Steel

EN 16MnCr5’s hard surface and tough core make it perfect forhigh-stress, pièces sujettes à l'usure dans tous les secteurs. Voici ses utilisations les plus courantes, avec des exemples concrets:

2.1 Industrie automobile

Cars, camions, and commercial vehicles rely on its durability for transmission and engine parts:

  • Engrenages: A European automaker uses it for manual transmission gears—its résistance à l'usure (58–62 HRC case) prolonge la durée de vie des engrenages de 40% contre. non-case-hardened steel.
  • Arbres à cames: Diesel engines use EN 16MnCr5 camshafts; the hard case resists wear from valve lifters, while the tough core handles constant mechanical stress.
  • Arbres: Electric vehicle (VE) drive shafts use it—its résistance à la fatigue (~500 MPa) withstands continuous torque without breaking.
  • Pignons: Differential pinions in trucks use it; le case hardening depth (0.8–1.2 mm) ensures long-term durability under heavy loads.

2.2 Génie mécanique

Industrial machines benefit from its balance of strength and wear resistance:

  • Roulements: Conveyor systems in factories use it for bearing races—its hard surface reduces friction, réduisant les temps d'arrêt pour maintenance en 25%.
  • Rouleaux: Printing presses use EN 16MnCr5 rollers; the uniform case hardness ensures consistent pressure on paper, improving print quality.
  • Bolts and fasteners: High-speed machine tools use it for critical bolts—its résistance à la traction (≥900 MPa) resists vibration loosening.

2.3 Machinerie lourde

Large-scale equipment in construction and mining relies on its toughness:

  • Ressorts: Excavator bucket springs use it; the tempered core retains elasticity, while the hard case resists scratch wear from debris.
  • Composants structurels: Crane hooks use EN 16MnCr5—its tough core (28–32 HRC) handles 30-ton loads, and the hard case resists corrosion from outdoor exposure.

3. Manufacturing Techniques for EN 16MnCr5 Case Hardening Steel

To maximize EN 16MnCr5’s performance, follow these industry-proven steps—with a focus oncase hardening (its key advantage):

3.1 Processus de fabrication de l'acier

EN 16MnCr5 is typically produced using two methods, both optimized for alloy uniformity:

  • Four à arc électrique (AEP): Most common for medium batches. Scrap steel is melted with electrodes, alors manganèse (Mn) et chrome (Cr) are added to reach the target composition. EAF is flexible, ideal for custom parts like large camshafts.
  • Four à oxygène de base (BOF): Used for mass production. Molten iron is mixed with oxygen to remove impurities, then alloy elements are added. BOF is faster and cost-effective for standard parts like gears or bolts.

3.2 Traitement thermique (Critical for Case Hardening)

Case hardening is the core process for EN 16MnCr5. The standard sequence is:

  1. Recuit: Chauffer à 820 – 850°C, cool slowly. Softens the steel to 180–220 HB, ce qui facilite l'usinage (cuts tool wear by 35%).
  2. Cémentation: Chauffer à 900 – 950°C dans une atmosphère riche en carbone (par ex., gaz naturel ou propane) pendant 4 à 6 heures. Le carbone se diffuse dans la surface, creating a high-carbon layer (0.8–1.0% C) pour case hardness.
  3. Trempe: Cool rapidly in oil (depuis 830 – 850°C). Hardens the carburized surface to 58–62 HRC while keeping the core tough.
  4. Trempe: Chauffer à 180 – 220°C, cool in air. Reduces brittleness in the case without losing hardness—critical for parts like gears that face impact.
  5. Nitruration (facultatif): For extra wear resistance, chauffer à 500 – 550°C in a nitrogen-rich atmosphere. Ajoute une mince (0.1–0,2 mm) super-hard layer (65–70 HRC), ideal for bearings.

3.3 Processus de formage

EN 16MnCr5 is shaped into parts before heat treatment (when it’s soft):

  • Forgeage: Hammered or pressed at 1100 – 1200°C. Aligns the metal’s grain structure, increasing résistance à la traction par 15% contre. pièces moulées. Used for camshafts, arbres, et les engrenages.
  • Roulement: Passed through rollers to make bars, feuilles, ou des tiges. Used for basic shapes like bolt blanks or spring stock.
  • Extrusion: Pushed through a die to make complex shapes (par ex., arbres creux). Ideal for precision parts like EV drive shafts.

3.4 Machining Processes

Machining is done after annealing (quand l'acier est mou) to avoid damaging tools:

  • Tournant: Uses a lathe to make cylindrical parts (par ex., arbres). Use cutting fluid (huile minérale) pour éviter la surchauffe.
  • Fraisage: Uses a rotating cutter to shape gear teeth or camshaft lobes. Carbide tools work best for precision (par ex., gear tooth tolerance ±0.02 mm).
  • Forage: Creates holes for bolts. High-speed drills (1000–1500 RPM) avoid cracking the soft steel.
  • Affûtage: Done after case hardening to smooth the hard surface. Ensures tight tolerances (±0,01 mm) for parts like bearing races.

4. Étude de cas: EN 16MnCr5 in Automotive Transmission Gears

A European automotive parts manufacturer faced a problem: their non-case-hardened steel gears failed after 150,000 kilomètres, leading to costly recalls. They switched to EN 16MnCr5—and solved the issue.

4.1 Défi

The manufacturer supplied gears for compact cars used in urban areas (frequent start-stop cycles). Non-case-hardened steel had lowrésistance à l'usure (30 CRH), leading to tooth wear and transmission slippage. The failure rate was 7% par année, hurting brand reputation.

4.2 Solution

They switched to EN 16MnCr5 gears, en utilisant:

  1. Forgeage (1150°C) to align grain structure and boost core strength.
  2. Recuit (830°C) to soften the steel for machining.
  3. Cémentation (920°C pour 5 heures) to create a 1.0 mm hard case.
  4. Trempe + trempe (200°C) to reach 59 HRC case hardness and 30 HRC core hardness.
  5. Precision grinding to smooth gear teeth, reducing friction.

4.3 Résultats

  • Service life: Gears now last 300,000 km—double the previous lifespan.
  • Économies de coûts: Cut recall costs by €250,000 per year.
  • Performance: Transmission efficiency improved by 6%, reducing fuel consumption for car owners.

5. Analyse comparative: EN 16MnCr5 vs. Autres matériaux

How does EN 16MnCr5 stack up against common alternatives—including other case hardening steels? Below is a side-by-side comparison:

MatérielCase HardnessDureté du noyauCase DepthRésistance à la tractionCoût (contre. EN 16MnCr5)Idéal pour
EN 16MnCr558–62 HRC28–32 HRC0.8–1.2 mm≥900 MPa100% (base)General case-hardened parts (engrenages, arbres)
EN 20MnCr558–62 HRC30–34 HRC0.6–1,0mm≥950 MPa110%Higher-stress parts (arbres robustes)
EN 18CrNiMo7-660–64 HRC32–36 HRC1.0–1.4 mm≥1000 MPa180%Des pièces performantes (aerospace gears)
JIS SCM42058–62 HRC25–30 HRC0.7–1.1 mm≥980 MPa105%Asian-market parts (EV drive shafts)
SAE 862058–62 HRC28–32 HRC0.8–1.2 mm≥900 MPa115%North American-market parts (arbres à cames)
Acier au carbone (S45C)N / A (no case)20–25 HRCN / A600 MPa50%Pièces à faible contrainte (parenthèses)

À retenir: EN 16MnCr5 offers the best balance ofcase hardness, core toughness, and cost for most case-hardened applications. It’s cheaper than EN 18CrNiMo7-6 and SAE 8620, while providing better wear resistance than non-case-hardened carbon steel.

Yigu Technology’s Perspective on EN 16MnCr5 Case Hardening Steel

Chez Yigu Technologie, EN 16MnCr5 is our top choice for clients needing reliable case-hardened parts—especially in automotive and machinery sectors. We’ve supplied it for 12+ années, and its consistentcase hardening depth and core toughness meet strict European standards. We optimize carburizing time (4–6 heures) to avoid over-hardening, and recommend zinc plating for outdoor parts. For manufacturers seeking a cost-effective, high-performance case hardening steel, EN 16MnCr5 is unmatched.

FAQ About EN 16MnCr5 Case Hardening Steel

1. Can EN 16MnCr5 be used in low-temperature environments?

Oui, c'estrésistance aux chocs (≥60 J at -20°C) lets it perform reliably down to -25°C. For colder climates (-30°C or below), adjust tempering to 200–220°C to boost toughness to ≥70 J.

2. How to adjust the case hardening depth of EN 16MnCr5?

To increase depth (par ex., for thick shafts), extend carburizing time to 7–8 hours. To decrease depth (par ex., for thin gears), shorten time to 3–4 hours. Always test hardness after adjustment to ensure consistency.

3. Is EN 16MnCr5 compatible with welding?

Oui, but use proper pre- and post-weld steps: preheat to 250–300°C, utiliser des électrodes à faible teneur en hydrogène (E7018), and post-weld anneal at 820–850°C. This prevents cracking and maintains the steel’s toughness.

Indice
Faire défiler vers le haut