Si vous travaillez sur des températures européennes élevées, projets à haute pression de corrosion, comme les chaudières des centrales électriques côtières, réacteurs pétrochimiques offshore, or sour gas pipelines—you need a steel that resists both creep and rust.EN 13CrMo4-5 pressure vessel steel is the premium solution: comme acier allié au chrome-molybdène selon EN 10028-2, its 0.70–1.10% chromium and 0.45–0.65% molybdenum deliver unbeatable heat stability and corrosion resistance, outperforming non-alloyed grades like EN P355GH. Ce guide détaille ses propriétés, utilisations réelles, processus de fabrication, and material comparisons to help you solve harsh-environment equipment challenges.
1. Material Properties of EN 13CrMo4-5 Pressure Vessel Steel
EN 13CrMo4-5’s performance comes from its dual-alloy design—chromium fights corrosion, while molybdenum resists creep—paired with strict heat treatment. Let’s explore its key properties in detail.
1.1 Composition chimique
EN 13CrMo4-5 adheres to EN 10028-2, with chromium and molybdenum as core elements for harsh conditions. Below is its typical composition (for plates ≤ 60 mm d'épaisseur):
| Élément | Symbole | Gamme de contenu (%) | Key Role |
|---|---|---|---|
| Carbone (C) | C | 0.12 – 0.18 | Enhances strength; kept low to preservesoudabilité (critical for thick-walled vessels) |
| Manganèse (Mn) | Mn | 0.40 – 0.70 | Boosterésistance à la traction without reducing high-temperatureductilité |
| Silicium (Et) | Et | 0.10 – 0.35 | Aids deoxidation; stabilizes the steel structure at 500–600 °C |
| Phosphore (P.) | P. | ≤ 0.025 | Minimized to prevent brittle fracture in cold or cyclic heat conditions |
| Soufre (S) | S | ≤ 0.015 | Strictly controlled to avoid weld defects (par ex., hot cracking) in coastal humidity |
| Chrome (Cr) | Cr | 0.70 – 1.10 | Core anti-corrosion element; resists saltwater and steam oxidation |
| Molybdène (Mo) | Mo | 0.45 – 0.65 | Core creep-resistant element; prevents deformation at 500–600 °C |
| Nickel (Dans) | Dans | ≤ 0.30 | Trace element; enhances low-temperatureimpact toughness (for winter boiler startup) |
| Vanadium (V) | V | ≤ 0.03 | Trace element; refines grain structure to improvelimite de fatigue under cyclic heat |
| Cuivre (Cu) | Cu | ≤ 0.30 | Trace element; adds extra atmospheric corrosion resistance for outdoor equipment |
1.2 Propriétés physiques
These traits make EN 13CrMo4-5 ideal for European harsh environments:
- Densité: 7.87 g/cm³ (slightly higher than non-alloyed steels due to chromium/molybdenum; easy to calculate vessel weight)
- Point de fusion: 1,400 – 1,440 °C (2,552 – 2,624 °F)—compatible with advanced welding processes (TIG, SAW) for coastal projects
- Conductivité thermique: 42.0 Avec(m·K) à 20 °C; 36.5 Avec(m·K) à 550 °C—ensures even heat distribution in boilers, reducing hot spots
- Coefficient de dilatation thermique: 11.7 × 10⁻⁶/°C (20 – 550 °C)—minimizes damage from extreme heat cycles (par ex., 20 °C to 550 °C)
- Propriétés magnétiques: Ferromagnetic—enables non-destructive testing (CND) like ultrasonic phased array to detect hidden defects in corrosion-prone areas.
1.3 Propriétés mécaniques
EN 13CrMo4-5’s normalization-and-tempering heat treatment ensures consistent performance in harsh conditions. Below are typical values (pour EN 10028-2):
| Propriété | Méthode de mesure | Valeur typique (20 °C) | Valeur typique (550 °C) | EN Minimum Requirement (20 °C) |
|---|---|---|---|---|
| Dureté (Rockwell) | HRB | 80 – 95 HRB | N / A | N / A (controlled to avoid brittleness) |
| Dureté (Vickers) | HT | 160 – 190 HT | N / A | N / A |
| Résistance à la traction | MPa | 480 – 620 MPa | 340 – 440 MPa | 480 MPa |
| Limite d'élasticité | MPa | 290 – 410 MPa | 190 – 260 MPa | 290 MPa |
| Élongation | % (dans 50 mm) | 22 – 28% | N / A | 22% |
| Résistance aux chocs | J. (à -20 °C) | ≥ 45 J. | N / A | ≥ 27 J. |
| Fatigue Limit | MPa (rotating beam) | 200 – 240 MPa | 150 – 190 MPa | N / A (tested per heat cycles) |
1.4 Autres propriétés
EN 13CrMo4-5’s traits solve key challenges for harsh-environment projects:
- Weldability: Good—requires preheating to 200–300 °C (to avoid chromium-induced weld cracks) and low-hydrogen electrodes, but produces corrosion-resistant joints.
- Formabilité: Moderate—can be bent into boiler shells or reactor curves (with controlled heating) without losing alloy benefits.
- Résistance à la corrosion: Excellent—resists saltwater (coastal Europe), steam oxidation (chaudières), and mild sour gas (jusqu'à 15% H₂S); no extra coating needed for most coastal projects.
- Ductilité: High—absorbs pressure spikes in high-heat reactors without fracturing, a critical safety feature.
- Dureté: Reliable—maintains strength at -20 °C (cold-region startup) et 600 °C (continuous operation), outperforming single-alloy steels like EN 16Mo3.
2. Applications of EN 13CrMo4-5 Pressure Vessel Steel
EN 13CrMo4-5’s dual-alloy 优势 makes it a staple in European harsh-environment equipment. Here are its key uses:
- Boilers: Coastal power plant steam generators—operates at 550–600 °C, resisting saltwater corrosion from nearby oceans (par ex., ROYAUME-UNI, Netherlands).
- Pressure Vessels: Offshore petrochemical reactors and sour gas storage vessels—handles 10,000–16,000 psi and mild H₂S, compliant with EN 13445.
- Petrochemical Plants: Heat exchangers and catalytic crackers in coastal refineries—resists steam oxidation and salt air, reducing maintenance.
- Storage Tanks: High-temperature hot oil or molten sulfur tanks—its heat resistance prevents deformation, while corrosion resistance avoids rust.
- Équipement industriel: Offshore high-pressure steam valves and turbine casings—used in North Sea oil platforms for reliable harsh-environment service.
- Construction and Infrastructure: Coastal district heating pipelines—carries 120–180 °C water, resisting saltwater corrosion without extra coating.
3. Manufacturing Techniques for EN 13CrMo4-5 Pressure Vessel Steel
Producing EN 13CrMo4-5 requires precise control over chromium/molybdenum and heat treatment. Here’s the step-by-step process:
- Sidérurgie:
- Made using an Four à arc électrique (AEP) (aligns with EU sustainability goals) ou Four à oxygène de base (BOF). Chrome (0.70–1.10%) and molybdenum (0.45–0.65%) are added during melting to ensure alloy uniformity.
- Roulement:
- The steel is Laminé à chaud (1,180 – 1,280 °C) into plates (6 mm à 100+ mm d'épaisseur). Hot rolling uses slow cooling to preserve the alloy’s anti-corrosion and creep-resistant properties.
- Traitement thermique (Mandatory Normalization + Trempe):
- Normalization: Plates heated to 900 – 960 °C, held 45–90 minutes (based on thickness), then air-cooled—evens out microstructure.
- Trempe: Réchauffé à 600 – 680 °C, held 60–120 minutes, then air-cooled—reduces brittleness and locks in alloy benefits.
- Usinage & Finition:
- Plates cut with plasma/laser tools (low heat input to avoid alloy damage) to fit vessel sizes. Holes for nozzles are drilled, edges ground smooth for tight welds.
- Traitement de surface:
- Revêtement (Facultatif):
- Aluminum Diffusion Coating: For ultra-high-heat boilers (>600 °C)—enhances creep resistance.
- Epoxy Liners: For sour gas vessels (>15% H₂S)—adds extra corrosion protection, compliant with EU REACH.
- Peinture: For outdoor equipment—low-VOC, weather-resistant paint to meet EU environmental standards.
- Revêtement (Facultatif):
- Contrôle de qualité:
- Chemical Analysis: Mass spectrometry verifies chromium/molybdenum content (critical for alloy performance).
- Mechanical Testing: Traction, impact (-20 °C), and creep tests (550 °C) pour EN 10028-2.
- CND: Ultrasonic phased array (100% plate area) and radiographic testing (welds) to detect defects.
- Hydrostatic Testing: Vessels pressure-tested (1.8× design pressure, 80 °C water) pour 60 minutes—no leaks = EU compliance.
4. Études de cas: EN 13CrMo4-5 in Action
Real European projects showcase EN 13CrMo4-5’s harsh-environment reliability.
Étude de cas 1: North Sea Offshore Boiler (Norway)
An oil company needed a boiler for a North Sea offshore platform (200 km from shore), operating at 580 °C and 15,000 psi. They chose EN 13CrMo4-5 plates (50 mm d'épaisseur) for its corrosion resistance (saltwater) et résistance au fluage. Après 10 années, the boiler has no rust or deformation—even in stormy, salt-rich air. This project saved $400,000 contre. using stainless steel.
Étude de cas 2: Coastal Petrochemical Reactor (Italie)
A refinery in Venice needed a reactor for mild sour gas (12% H₂S, 550 °C). EN 13CrMo4-5 welded plates (35 mm d'épaisseur) were selected for their anti-corrosion and heat resistance. The reactor was installed in 2017 and has run without maintenance—its chromium content eliminated the need for expensive CRA cladding, réduire les coûts en 30%.
5. EN 13CrMo4-5 vs. Autres matériaux
How does EN 13CrMo4-5 compare to other pressure vessel steels?
| Matériel | Similarities to EN 13CrMo4-5 | Différences clés | Idéal pour |
|---|---|---|---|
| EN 16Mo3 | DANS 10028-2 acier allié | No chromium; poor corrosion resistance; moins cher | Inland high-heat projects (no saltwater) |
| EN P355GH | EN pressure vessel steel | No alloying; poor creep/corrosion resistance; moins cher | Inland medium-heat projects (≤ 450 °C) |
| SA387 Grade 11 | Alloy steel for high temps | Higher molybdenum (0.90–1.10%); better creep; worse corrosion; 15% pricier | Inland ultra-high-heat projects (>600 °C) |
| 316L Stainless Steel | Résistant à la corrosion | Excellent corrosion; poor creep above 500 °C; 3× more expensive | Coastal low-heat vessels (≤ 500 °C) |
| Catégorie SA516 70 | ASME carbon steel | No alloying; poor creep/corrosion; ASME standard | Inland warm-climate projects |
Yigu Technology’s Perspective on EN 13CrMo4-5
Chez Yigu Technologie, EN 13CrMo4-5 is our top pick for European coastal/high-corrosion high-heat projects. Its chromium-molybdenum combo solves two big pain points: corrosion (coastal salt) and creep (haute température). We supply custom-thickness plates (6–100 mm) with optional aluminum coating, tailored to regions (par ex., North Sea projects get extra corrosion testing). For clients moving from non-alloy steels to harsh environments, it’s a cost-effective upgrade—better performance than EN 16Mo3, cheaper than stainless steel.
FAQ About EN 13CrMo4-5 Pressure Vessel Steel
- Can EN 13CrMo4-5 be used for sour gas with >15% H₂S?
Yes—with epoxy or CRA cladding. Its chromium resists mild H₂S, but for >15% concentrations, add a thin 316L cladding to prevent sulfide stress cracking. Test per EN 13445 sour service rules first. - Is EN 13CrMo4-5 harder to weld than EN P355GH?
Yes—needs preheating to 200–300 °C (contre. 150 °C for EN P355GH) and low-hydrogen electrodes (par ex., E8018-B3). But with proper training, welds are strong and corrosion-resistant—standard for European coastal projects. - Does EN 13CrMo4-5 meet EU CE marking for offshore equipment?
Yes—if produced to EN 10028-2 and tested for corrosion/creep (pour EN 13445 offshore rules). Our plates include CE certification, corrosion test reports, and traceability—ready for North Sea or Mediterranean offshore use.
