Acier pour récipients sous pression EN 13CrMo4-5: Propriétés, Utilisations & Guide de fabrication

fabrication de pièces métalliques sur mesure

Si vous travaillez sur des températures européennes élevées, projets à haute pression de corrosion, comme les chaudières des centrales électriques côtières, réacteurs pétrochimiques offshore, ou des gazoducs corrosifs : vous avez besoin d'un acier qui résiste à la fois au fluage et à la rouille. L'acier pour récipients sous pression EN 13CrMo4-5 est la solution haut de gamme: comme acier allié au chrome-molybdène selon EN 10028-2, ses 0,70 à 1,10 % de chrome et 0,45 à 0,65 % de molybdène offrent une stabilité thermique imbattable et […]

Si vous travaillez sur des températures européennes élevées, projets à haute pression de corrosion, comme les chaudières des centrales électriques côtières, réacteurs pétrochimiques offshore, or sour gas pipelines—you need a steel that resists both creep and rust.EN 13CrMo4-5 pressure vessel steel is the premium solution: comme acier allié au chrome-molybdène selon EN 10028-2, its 0.70–1.10% chromium and 0.45–0.65% molybdenum deliver unbeatable heat stability and corrosion resistance, outperforming non-alloyed grades like EN P355GH. Ce guide détaille ses propriétés, utilisations réelles, processus de fabrication, and material comparisons to help you solve harsh-environment equipment challenges.

1. Material Properties of EN 13CrMo4-5 Pressure Vessel Steel

EN 13CrMo4-5’s performance comes from its dual-alloy design—chromium fights corrosion, while molybdenum resists creep—paired with strict heat treatment. Let’s explore its key properties in detail.

1.1 Composition chimique

EN 13CrMo4-5 adheres to EN 10028-2, with chromium and molybdenum as core elements for harsh conditions. Below is its typical composition (for plates ≤ 60 mm d'épaisseur):

ÉlémentSymboleGamme de contenu (%)Key Role
Carbone (C)C0.12 – 0.18Enhances strength; kept low to preservesoudabilité (critical for thick-walled vessels)
Manganèse (Mn)Mn0.40 – 0.70Boosterésistance à la traction without reducing high-temperatureductilité
Silicium (Et)Et0.10 – 0.35Aids deoxidation; stabilizes the steel structure at 500–600 °C
Phosphore (P.)P.≤ 0.025Minimized to prevent brittle fracture in cold or cyclic heat conditions
Soufre (S)S≤ 0.015Strictly controlled to avoid weld defects (par ex., hot cracking) in coastal humidity
Chrome (Cr)Cr0.70 – 1.10Core anti-corrosion element; resists saltwater and steam oxidation
Molybdène (Mo)Mo0.45 – 0.65Core creep-resistant element; prevents deformation at 500–600 °C
Nickel (Dans)Dans≤ 0.30Trace element; enhances low-temperatureimpact toughness (for winter boiler startup)
Vanadium (V)V≤ 0.03Trace element; refines grain structure to improvelimite de fatigue under cyclic heat
Cuivre (Cu)Cu≤ 0.30Trace element; adds extra atmospheric corrosion resistance for outdoor equipment

1.2 Propriétés physiques

These traits make EN 13CrMo4-5 ideal for European harsh environments:

  • Densité: 7.87 g/cm³ (slightly higher than non-alloyed steels due to chromium/molybdenum; easy to calculate vessel weight)
  • Point de fusion: 1,400 – 1,440 °C (2,552 – 2,624 °F)—compatible with advanced welding processes (TIG, SAW) for coastal projects
  • Conductivité thermique: 42.0 Avec(m·K) à 20 °C; 36.5 Avec(m·K) à 550 °C—ensures even heat distribution in boilers, reducing hot spots
  • Coefficient de dilatation thermique: 11.7 × 10⁻⁶/°C (20 – 550 °C)—minimizes damage from extreme heat cycles (par ex., 20 °C to 550 °C)
  • Propriétés magnétiques: Ferromagnetic—enables non-destructive testing (CND) like ultrasonic phased array to detect hidden defects in corrosion-prone areas.

1.3 Propriétés mécaniques

EN 13CrMo4-5’s normalization-and-tempering heat treatment ensures consistent performance in harsh conditions. Below are typical values (pour EN 10028-2):

PropriétéMéthode de mesureValeur typique (20 °C)Valeur typique (550 °C)EN Minimum Requirement (20 °C)
Dureté (Rockwell)HRB80 – 95 HRBN / AN / A (controlled to avoid brittleness)
Dureté (Vickers)HT160 – 190 HTN / AN / A
Résistance à la tractionMPa480 – 620 MPa340 – 440 MPa480 MPa
Limite d'élasticitéMPa290 – 410 MPa190 – 260 MPa290 MPa
Élongation% (dans 50 mm)22 – 28%N / A22%
Résistance aux chocsJ. (à -20 °C)≥ 45 J.N / A≥ 27 J.
Fatigue LimitMPa (rotating beam)200 – 240 MPa150 – 190 MPaN / A (tested per heat cycles)

1.4 Autres propriétés

EN 13CrMo4-5’s traits solve key challenges for harsh-environment projects:

  • Weldability: Good—requires preheating to 200–300 °C (to avoid chromium-induced weld cracks) and low-hydrogen electrodes, but produces corrosion-resistant joints.
  • Formabilité: Moderate—can be bent into boiler shells or reactor curves (with controlled heating) without losing alloy benefits.
  • Résistance à la corrosion: Excellent—resists saltwater (coastal Europe), steam oxidation (chaudières), and mild sour gas (jusqu'à 15% H₂S); no extra coating needed for most coastal projects.
  • Ductilité: High—absorbs pressure spikes in high-heat reactors without fracturing, a critical safety feature.
  • Dureté: Reliable—maintains strength at -20 °C (cold-region startup) et 600 °C (continuous operation), outperforming single-alloy steels like EN 16Mo3.

2. Applications of EN 13CrMo4-5 Pressure Vessel Steel

EN 13CrMo4-5’s dual-alloy 优势 makes it a staple in European harsh-environment equipment. Here are its key uses:

  • Boilers: Coastal power plant steam generators—operates at 550–600 °C, resisting saltwater corrosion from nearby oceans (par ex., ROYAUME-UNI, Netherlands).
  • Pressure Vessels: Offshore petrochemical reactors and sour gas storage vessels—handles 10,000–16,000 psi and mild H₂S, compliant with EN 13445.
  • Petrochemical Plants: Heat exchangers and catalytic crackers in coastal refineries—resists steam oxidation and salt air, reducing maintenance.
  • Storage Tanks: High-temperature hot oil or molten sulfur tanks—its heat resistance prevents deformation, while corrosion resistance avoids rust.
  • Équipement industriel: Offshore high-pressure steam valves and turbine casings—used in North Sea oil platforms for reliable harsh-environment service.
  • Construction and Infrastructure: Coastal district heating pipelines—carries 120–180 °C water, resisting saltwater corrosion without extra coating.

3. Manufacturing Techniques for EN 13CrMo4-5 Pressure Vessel Steel

Producing EN 13CrMo4-5 requires precise control over chromium/molybdenum and heat treatment. Here’s the step-by-step process:

  1. Sidérurgie:
    • Made using an Four à arc électrique (AEP) (aligns with EU sustainability goals) ou Four à oxygène de base (BOF). Chrome (0.70–1.10%) and molybdenum (0.45–0.65%) are added during melting to ensure alloy uniformity.
  2. Roulement:
    • The steel is Laminé à chaud (1,180 – 1,280 °C) into plates (6 mm à 100+ mm d'épaisseur). Hot rolling uses slow cooling to preserve the alloy’s anti-corrosion and creep-resistant properties.
  3. Traitement thermique (Mandatory Normalization + Trempe):
    • Normalization: Plates heated to 900 – 960 °C, held 45–90 minutes (based on thickness), then air-cooled—evens out microstructure.
    • Trempe: Réchauffé à 600 – 680 °C, held 60–120 minutes, then air-cooled—reduces brittleness and locks in alloy benefits.
  4. Usinage & Finition:
    • Plates cut with plasma/laser tools (low heat input to avoid alloy damage) to fit vessel sizes. Holes for nozzles are drilled, edges ground smooth for tight welds.
  5. Traitement de surface:
    • Revêtement (Facultatif):
      • Aluminum Diffusion Coating: For ultra-high-heat boilers (>600 °C)—enhances creep resistance.
      • Epoxy Liners: For sour gas vessels (>15% H₂S)—adds extra corrosion protection, compliant with EU REACH.
    • Peinture: For outdoor equipment—low-VOC, weather-resistant paint to meet EU environmental standards.
  6. Contrôle de qualité:
    • Chemical Analysis: Mass spectrometry verifies chromium/molybdenum content (critical for alloy performance).
    • Mechanical Testing: Traction, impact (-20 °C), and creep tests (550 °C) pour EN 10028-2.
    • CND: Ultrasonic phased array (100% plate area) and radiographic testing (welds) to detect defects.
    • Hydrostatic Testing: Vessels pressure-tested (1.8× design pressure, 80 °C water) pour 60 minutes—no leaks = EU compliance.

4. Études de cas: EN 13CrMo4-5 in Action

Real European projects showcase EN 13CrMo4-5’s harsh-environment reliability.

Étude de cas 1: North Sea Offshore Boiler (Norway)

An oil company needed a boiler for a North Sea offshore platform (200 km from shore), operating at 580 °C and 15,000 psi. They chose EN 13CrMo4-5 plates (50 mm d'épaisseur) for its corrosion resistance (saltwater) et résistance au fluage. Après 10 années, the boiler has no rust or deformation—even in stormy, salt-rich air. This project saved $400,000 contre. using stainless steel.

Étude de cas 2: Coastal Petrochemical Reactor (Italie)

A refinery in Venice needed a reactor for mild sour gas (12% H₂S, 550 °C). EN 13CrMo4-5 welded plates (35 mm d'épaisseur) were selected for their anti-corrosion and heat resistance. The reactor was installed in 2017 and has run without maintenance—its chromium content eliminated the need for expensive CRA cladding, réduire les coûts en 30%.

5. EN 13CrMo4-5 vs. Autres matériaux

How does EN 13CrMo4-5 compare to other pressure vessel steels?

MatérielSimilarities to EN 13CrMo4-5Différences clésIdéal pour
EN 16Mo3DANS 10028-2 acier alliéNo chromium; poor corrosion resistance; moins cherInland high-heat projects (no saltwater)
EN P355GHEN pressure vessel steelNo alloying; poor creep/corrosion resistance; moins cherInland medium-heat projects (≤ 450 °C)
SA387 Grade 11Alloy steel for high tempsHigher molybdenum (0.90–1.10%); better creep; worse corrosion; 15% pricierInland ultra-high-heat projects (>600 °C)
316L Stainless SteelRésistant à la corrosionExcellent corrosion; poor creep above 500 °C; 3× more expensiveCoastal low-heat vessels (≤ 500 °C)
Catégorie SA516 70ASME carbon steelNo alloying; poor creep/corrosion; ASME standardInland warm-climate projects

Yigu Technology’s Perspective on EN 13CrMo4-5

Chez Yigu Technologie, EN 13CrMo4-5 is our top pick for European coastal/high-corrosion high-heat projects. Its chromium-molybdenum combo solves two big pain points: corrosion (coastal salt) and creep (haute température). We supply custom-thickness plates (6–100 mm) with optional aluminum coating, tailored to regions (par ex., North Sea projects get extra corrosion testing). For clients moving from non-alloy steels to harsh environments, it’s a cost-effective upgrade—better performance than EN 16Mo3, cheaper than stainless steel.

FAQ About EN 13CrMo4-5 Pressure Vessel Steel

  1. Can EN 13CrMo4-5 be used for sour gas with >15% H₂S?
    Yes—with epoxy or CRA cladding. Its chromium resists mild H₂S, but for >15% concentrations, add a thin 316L cladding to prevent sulfide stress cracking. Test per EN 13445 sour service rules first.
  2. Is EN 13CrMo4-5 harder to weld than EN P355GH?
    Yes—needs preheating to 200–300 °C (contre. 150 °C for EN P355GH) and low-hydrogen electrodes (par ex., E8018-B3). But with proper training, welds are strong and corrosion-resistant—standard for European coastal projects.
  3. Does EN 13CrMo4-5 meet EU CE marking for offshore equipment?
    Yes—if produced to EN 10028-2 and tested for corrosion/creep (pour EN 13445 offshore rules). Our plates include CE certification, corrosion test reports, and traceability—ready for North Sea or Mediterranean offshore use.
Indice
Faire défiler vers le haut