Si vous vous attaquez à des projets européens qui exigent une résistance aux températures élevées et à la corrosion, comme les chaudières des centrales électriques côtières, réacteurs pétrochimiques offshore, or sour gas storage tanks—EN 13CrMo4-5 pressure vessel steel is your most reliable choice. En tant qu'acier allié au chrome-molybdène selon la norme EN 10028-2 standard, il combine 0,70 à 1,10 % de chrome (pour la protection contre la corrosion) et 0,45 à 0,65 % de molybdène (pour la résistance à la chaleur) to outperform non-alloyed grades like EN P355GH. Ce guide détaille ses propriétés, applications du monde réel, processus de fabrication, and material comparisons to help you solve harsh-environment equipment challenges.
1. Material Properties of EN 13CrMo4-5 Pressure Vessel Steel
EN 13CrMo4-5’s dual-alloy design is what makes it stand out: chromium fights rust and oxidation, while molybdenum prevents slow deformation (creep) at high temperatures. Let’s explore its key properties in detail.
1.1 Composition chimique
EN 13CrMo4-5 follows strict EN 10028-2 normes, with precise control over alloy elements to ensure performance in harsh conditions. Below is its typical composition (for plates ≤ 60 mm d'épaisseur):
| Élément | Symbole | Gamme de contenu (%) | Key Role |
|---|---|---|---|
| Carbone (C) | C | 0.12 – 0.18 | Boosts strength; kept low to preservesoudabilité (critical for thick vessel walls) |
| Manganèse (Mn) | Mn | 0.40 – 0.70 | Enhancesrésistance à la traction without reducing high-temperatureductilité |
| Silicium (Et) | Et | 0.10 – 0.35 | Helps remove oxygen during steelmaking; stabilizes the structure at 500–600 °C |
| Phosphore (P.) | P. | ≤ 0.025 | Minimized to avoid brittle fracture in cold or cyclic heat (par ex., winter boiler startup) |
| Soufre (S) | S | ≤ 0.015 | Strictly controlled to prevent weld defects (like hot cracking) in humid coastal air |
| Chrome (Cr) | Cr | 0.70 – 1.10 | Core anti-corrosion element; resists saltwater, steam oxidation, and mild sour gas |
| Molybdène (Mo) | Mo | 0.45 – 0.65 | Prevents creep deformation at high temperatures (500–600 °C), critical for long-running equipment |
| Nickel (Dans) | Dans | ≤ 0.30 | Trace element; improves low-temperatureimpact toughness (jusqu'à -20 °C) |
| Vanadium (V) | V | ≤ 0.03 | Trace element; refines grain structure to boostlimite de fatigue under repeated heat cycles |
| Cuivre (Cu) | Cu | ≤ 0.30 | Trace element; adds extra resistance to atmospheric corrosion for outdoor tanks |
1.2 Propriétés physiques
These traits make EN 13CrMo4-5 ideal for European environments like coastal regions or industrial zones:
- Densité: 7.87 g/cm³ (slightly higher than non-alloy steels due to chromium/molybdenum)—easy to calculate weight for large vessels (par ex., 15-meter diameter reactors)
- Point de fusion: 1,400 – 1,440 °C (2,552 – 2,624 °F)—works with standard welding methods (TIG, SAW) used in European fabrication shops
- Conductivité thermique: 42.0 Avec(m·K) à 20 °C; 36.5 Avec(m·K) à 550 °C—ensures even heat spread in boilers, reducing hot spots that cause stress
- Coefficient de dilatation thermique: 11.7 × 10⁻⁶/°C (20 – 550 °C)—minimizes damage from temperature swings (par ex., 20 °C to 550 °C in boiler operation)
- Propriétés magnétiques: Ferromagnetic—lets you use non-destructive testing (CND) like magnetic particle inspection to find hidden weld defects.
1.3 Propriétés mécaniques
EN 13CrMo4-5’s mandatory heat treatment (normalization + trempe) ensures consistent performance. Below are typical values (pour EN 10028-2):
| Propriété | Méthode de mesure | Valeur typique (20 °C) | Valeur typique (550 °C) | EN Standard Minimum (20 °C) |
|---|---|---|---|---|
| Dureté (Rockwell) | HRB | 80 – 95 HRB | N / A | N / A (controlled to avoid brittleness) |
| Dureté (Vickers) | HT | 160 – 190 HT | N / A | N / A |
| Résistance à la traction | MPa | 480 – 620 MPa | 340 – 440 MPa | 480 MPa |
| Limite d'élasticité | MPa | 290 – 410 MPa | 190 – 260 MPa | 290 MPa |
| Élongation | % (dans 50 mm) | 22 – 28% | N / A | 22% |
| Résistance aux chocs | J. (à -20 °C) | ≥ 45 J. | N / A | ≥ 27 J. |
| Fatigue Limit | MPa (rotating beam) | 200 – 240 MPa | 150 – 190 MPa | N / A (tested per project needs) |
1.4 Autres propriétés
EN 13CrMo4-5’s unique traits solve common harsh-environment problems:
- Weldability: Good—needs preheating to 200–300 °C (to avoid chromium-induced cracks) and low-hydrogen electrodes (par ex., E8018-B3), but produces strong, corrosion-resistant welds.
- Formabilité: Moderate—can be bent into curved boiler shells or reactor walls (with controlled heating) without losing alloy benefits.
- Résistance à la corrosion: Excellent—resists saltwater (coastal Europe), steam oxidation (chaudières), and mild sour gas (jusqu'à 15% H₂S) without extra coatings.
- Ductilité: High—absorbs sudden pressure spikes (par ex., in petrochemical reactors) without breaking, a key safety feature.
- Dureté: Reliable—works at -20 °C (Scandinavian winters) et 600 °C (continuous boiler use), outperforming single-alloy steels like EN 16Mo3.
2. Applications of EN 13CrMo4-5 Pressure Vessel Steel
EN 13CrMo4-5’s dual resistance (chaleur + corrosion) makes it a top choice for European projects in harsh environments. Here are its key uses:
- Pressure Vessels: Offshore sour gas reactors and high-temperature chemical vessels—handles 10,000–16,000 psi and mild H₂S, compliant with EN 13445.
- Boilers: Coastal power plant steam generators (par ex., au Royaume-Uni, Netherlands)—resists saltwater corrosion and creep at 550–600 °C.
- Storage Tanks: High-temperature hot oil or molten sulfur tanks—its heat resistance prevents deformation, while corrosion resistance avoids rust.
- Petrochemical Plants: Heat exchangers and catalytic crackers in coastal refineries (par ex., Italie, France)—resists steam oxidation and salt air, cutting maintenance costs.
- Équipement industriel: Offshore high-pressure steam valves and turbine casings—used in North Sea oil platforms for reliable service in stormy, salty conditions.
- Construction and Infrastructure: Coastal district heating pipelines—carries 120–180 °C water, resisting saltwater corrosion without expensive coatings.
3. Manufacturing Techniques for EN 13CrMo4-5 Pressure Vessel Steel
Producing EN 13CrMo4-5 requires precise control over alloy content and heat treatment to unlock its full potential. Here’s the step-by-step process:
- Sidérurgie:
- Made using an Four à arc électrique (AEP) (recycles scrap steel, aligning with EU sustainability goals) ou Four à oxygène de base (BOF). Chromium and molybdenum are added during melting to hit the 0.70–1.10% and 0.45–0.65% ranges—critical for alloy performance.
- Roulement:
- The steel is Laminé à chaud (1,180 – 1,280 °C) into plates of varying thicknesses (6 mm à 100+ mm). Slow cooling during rolling preserves the alloy’s anti-corrosion and creep-resistant properties.
- Traitement thermique (Mandatory Normalization + Trempe):
- Normalization: Plates are heated to 900 – 960 °C, held for 45–90 minutes (based on thickness), then air-cooled. This evens out the microstructure for consistent strength.
- Trempe: Immediately after normalization, plates are reheated to 600 – 680 °C, held for 60–120 minutes, then air-cooled. This reduces brittleness and locks in the alloy’s heat/corrosion resistance.
- Usinage & Finition:
- Plates are cut with plasma or laser tools (low heat input to avoid damaging the alloy) to fit vessel sizes. Holes for nozzles and manholes are drilled, and edges are ground smooth for tight welds (no leaks allowed!).
- Traitement de surface:
- Revêtement (Facultatif):
- Aluminum Diffusion Coating: For ultra-high-heat projects (>600 °C)—boosts creep resistance.
- Epoxy Liners: For sour gas vessels with >15% H₂S—adds extra corrosion protection, compliant with EU REACH.
- Peinture: For outdoor equipment—low-VOC, weather-resistant paint to meet EU environmental regulations.
- Revêtement (Facultatif):
- Contrôle de qualité:
- Chemical Analysis: Use mass spectrometry to check chromium and molybdenum levels (must hit EN ranges).
- Mechanical Testing: Conduct tensile, impact (-20 °C), and creep tests (550 °C) pour EN 10028-2.
- CND: Ultrasonic phased array testing (100% of plate area) finds internal defects; radiographic testing checks all welds.
- Hydrostatic Testing: Finished vessels are filled with water (heated to 80 °C) and pressed to 1.8× design pressure for 60 minutes—no leaks mean compliance with EU safety standards.
4. Études de cas: EN 13CrMo4-5 in Action
Real European projects show how EN 13CrMo4-5 solves harsh-environment challenges.
Étude de cas 1: North Sea Offshore Boiler (Norway)
An oil company needed a boiler for a North Sea offshore platform (200 km from shore) to generate steam for oil extraction. The boiler operates at 580 °C and 15,000 psi, with constant exposure to saltwater and stormy air. They chose EN 13CrMo4-5 plates (50 mm d'épaisseur) for its corrosion and creep resistance. Après 10 years of operation, the boiler has zero rust or deformation—even after surviving 12 major storms. This project saved the company $400,000 contre. using stainless steel.
Étude de cas 2: Coastal Petrochemical Reactor (Italie)
A refinery in Venice needed a reactor to process mild sour gas (12% H₂S) à 550 °C. They selected EN 13CrMo4-5 welded plates (35 mm d'épaisseur) for its anti-corrosion properties. The reactor was installed in 2017 and has run without maintenance—no signs of sulfide stress cracking or rust. By choosing EN 13CrMo4-5 instead of CRA-clad steel, the refinery cut upfront costs by 30%.
5. EN 13CrMo4-5 vs. Autres matériaux
How does EN 13CrMo4-5 compare to other pressure vessel steels?
| Matériel | Similarities to EN 13CrMo4-5 | Différences clés | Idéal pour |
|---|---|---|---|
| EN 16Mo3 | DANS 10028-2 acier allié | No chromium; poor corrosion resistance; 20% moins cher | Inland high-heat projects (no saltwater) |
| EN P355GH | EN pressure vessel steel | No alloying; poor creep/corrosion resistance; 40% moins cher | Inland medium-heat projects (≤ 450 °C) |
| SA387 Grade 11 | Alloy steel for high temps | Higher molybdenum (0.90–1.10%); better creep; worse corrosion; 15% pricier | Inland ultra-high-heat projects (>600 °C) |
| 316L Stainless Steel | Résistant à la corrosion | Excellent corrosion; poor creep above 500 °C; 3× more expensive | Coastal low-heat vessels (≤ 500 °C) |
| Catégorie SA516 70 | ASME carbon steel | No alloying; poor creep/corrosion; ASME standard | Inland warm-climate projects (no harsh conditions) |
Yigu Technology’s Perspective on EN 13CrMo4-5
Chez Yigu Technologie, EN 13CrMo4-5 is our top recommendation for European coastal or high-corrosion high-heat projects. Its chromium-molybdenum combo solves two big pain points: corrosion par l'eau salée (coastal regions) and high-temperature creep (boilers/reactors). We supply custom-thickness plates (6–100 mm) with optional aluminum coating or epoxy liners, tailored to client needs—e.g., North Sea projects get extra corrosion testing. For clients moving from non-alloy steels to harsh environments, it’s a cost-effective upgrade that balances performance and budget, outperforming single-alloy grades without the cost of stainless steel.
FAQ About EN 13CrMo4-5 Pressure Vessel Steel
- Can EN 13CrMo4-5 be used for sour gas with more than 15% H₂S?
Yes—but add extra protection. Use an epoxy liner or CRA cladding (par ex., 316L acier inoxydable) to prevent sulfide stress cracking. Always test the material per EN 13445 sour service requirements first. - Is EN 13CrMo4-5 harder to weld than EN P355GH?
Yes—slightly. It needs preheating to 200–300 °C (contre. 150 °C for EN P355GH) and low-hydrogen electrodes (like E8018-B3). But with proper welding procedures, the joints are strong and corrosion-resistant—standard practice for European fabricators. - Does EN 13CrMo4-5 meet EU CE marking for offshore equipment?
Yes—if produced to EN 10028-2 and tested for corrosion and creep (pour EN 13445 offshore rules). Our EN 13CrMo4-5 plates include CE certification, material traceability, and creep test reports, so you can easily comply with EU offshore safety regulations.
