EN 10CrMo9-10 Pressure Vessel Steel: Propriétés, Usages & Guide de fabrication

Pièces métalliques Fabrication personnalisées

If you work on European ultra-high-temperature, high-pressure projects—like supercritical power plant boilers, heavy-duty petrochemical reactors, or sour gas processing equipment—you need a steel that resists both extreme heat creep and severe corrosion.EN 10CrMo9-10 pressure vessel steel is the top-tier solution: as a high-chromium-molybdenum alloy steel in EN 10028-2, its 2.00–2.50% chromium and 0.90–1.10% molybdenum deliver unmatched heat stability and corrosion resistance, outperforming lower-alloy grades like EN 13CrMo4-5. This guide breaks down its properties, Utilise du monde réel, processus de fabrication, and material comparisons to help you solve the most demanding harsh-environment equipment challenges.

1. Material Properties of EN 10CrMo9-10 Pressure Vessel Steel

EN 10CrMo9-10’s performance stems from its high-alloy design—elevated chromium fights aggressive corrosion, while increased molybdenum resists creep at ultra-high temperatures—paired with strict heat treatment. Explorons ses principales propriétés en détail.

1.1 Composition chimique

EN 10CrMo9-10 adheres to EN 10028-2, with precise control over high chromium and molybdenum levels to handle extreme conditions. Ci-dessous est sa composition typique (Pour les assiettes ≤ 60 mm d'épaisseur):

ÉlémentSymbolePlage de contenu (%)Rôle clé
Carbone (C)C0.08 - 0.15Améliore la résistance à haute température; kept low to preservesoudabilité (critical for thick-walled ultra-high-pressure vessels)
Manganèse (MN)MN0.40 - 0.70Augmentationrésistance à la traction without compromising high-temperatureductilité
Silicium (Et)Et0.10 - 0.35Aids deoxidation; stabilizes the steel structure at 550–650 °C
Phosphore (P)P≤ 0.025Minimized to prevent brittle fracture in cyclic ultra-high-temperature conditions
Soufre (S)S≤ 0.015Strictly controlled to avoid weld defects (Par exemple, hot cracking) in high-heat fabrication
Chrome (Croisement)Croisement2.00 - 2.50Core anti-corrosion element; resists aggressive steam oxidation, eau salée, and high-concentration sour gas (jusqu'à 25% H₂s)
Molybdène (MO)MO0.90 - 1.10Core creep-resistant element; prevents deformation at 550–650 °C, critical for long-running supercritical equipment
Nickel (Dans)Dans≤ 0.30Trace element; enhances low-temperaturerésistance à l'impact (vers le bas -20 ° C) for cold-region startup
Vanadium (V)V≤ 0.03Trace element; refines grain structure to improvefatigue limit under repeated ultra-high-temperature cycles
Cuivre (Cu)Cu≤ 0.30Trace element; adds extra atmospheric corrosion resistance for outdoor ultra-high-heat equipment

1.2 Propriétés physiques

These traits make EN 10CrMo9-10 ideal for European extreme-environment projects:

  • Densité: 7.88 g / cm³ (slightly higher than lower-alloy steels due to high chromium/molybdenum; easy to calculate weight for large vessels like 20-meter diameter reactors)
  • Point de fusion: 1,390 - 1,430 ° C (2,534 - 2,606 ° F)—compatible with advanced welding processes (Tig, submerged arc welding) for ultra-high-pressure vessel fabrication
  • Conductivité thermique: 40.5 Avec(m · k) à 20 ° C; 34.0 Avec(m · k) à 600 °C—ensures even heat distribution in supercritical boilers, reducing hot spots that cause stress cracking
  • Coefficient de dilatation thermique: 11.6 × 10⁻⁶ / ° C (20 - 600 ° C)—minimizes damage from extreme temperature swings (Par exemple, 20 °C to 650 °C in supercritical boiler operation)
  • Propriétés magnétiques: Ferromagnetic—enables high-precision non-destructive testing (NDT) like ultrasonic phased array to detect hidden defects in thick, heat-exposed plates.

1.3 Propriétés mécaniques

EN 10CrMo9-10’s mandatory normalization-and-tempering heat treatment ensures consistent performance at ultra-high temperatures. Vous trouverez ci-dessous des valeurs typiques (pour 10028-2):

PropriétéMeasurement MethodValeur typique (20 ° C)Valeur typique (600 ° C)EN Standard Minimum (20 ° C)
Dureté (Rockwell)HRB85 - 100 HRBN / AN / A (contrôlé pour éviter la fragilité)
Dureté (Vickers)HV170 - 200 HVN / AN / A
Résistance à la tractionMPA510 - 650 MPA360 - 460 MPA510 MPA
Limite d'élasticitéMPA300 - 420 MPA200 - 280 MPA300 MPA
Élongation% (dans 50 MM)20 - 26%N / A20%
Résistance à l'impactJ (à -20 ° C)≥ 45 JN / A≥ 27 J
Fatigue LimitMPA (rotating beam)210 - 250 MPA160 - 200 MPAN / A (tested per project needs)

1.4 Autres propriétés

EN 10CrMo9-10’s unique traits solve the most demanding harsh-environment problems:

  • Soudabilité: Good—requires preheating to 250–350 °C (to avoid high-alloy-induced weld cracks) and low-hydrogen, high-alloy electrodes (Par exemple, E9018-B3), but produces strong, corrosion-resistant joints for ultra-high-pressure service.
  • Formabilité: Moderate—can be bent into curved supercritical boiler tubes or reactor walls (with precise temperature control) without losing alloy benefits.
  • Résistance à la corrosion: Excellent—resists supercritical steam oxidation (650 ° C), eau salée (coastal Europe), and high-concentration sour gas (jusqu'à 25% H₂s); minimal extra coating needed for most severe conditions.
  • Ductilité: High—absorbs sudden pressure spikes (Par exemple, in petrochemical reactors) without fracturing, a critical safety feature for ultra-high-pressure equipment.
  • Dureté: Superior—maintains strength at -20 ° C (Scandinavian winters) et 650 ° C (continuous supercritical operation), outperforming lower-alloy steels like EN 13CrMo4-5.

2. Applications of EN 10CrMo9-10 Pressure Vessel Steel

EN 10CrMo9-10’s high-alloy advantages make it a staple in European ultra-demanding projects. Here are its key uses:

  • Vaisseaux de pression: Ultra-high-pressure sour gas reactors and supercritical chemical processing vessels—handles 16,000–20,000 psi and 550–650 °C, compliant with EN 13445.
  • Boilers: Supercritical power plant steam generators (Par exemple, in Germany, France)—resists creep at 600–650 °C, maximizing energy efficiency for large-scale electricity production.
  • Réservoirs de stockage: High-temperature molten salt or heavy oil storage tanks—its heat resistance prevents deformation, while corrosion resistance avoids rust in aggressive media.
  • Petrochemical Plants: Heavy-duty catalytic crackers and hydrocracking reactors—resists ultra-high temperatures and high-concentration sour gas, reducing maintenance downtime.
  • Équipement industriel: Ultra-high-pressure steam valves and turbine casings—used in European advanced manufacturing (Par exemple, aerospace component heat treatment) for reliable harsh-service performance.
  • Construction et infrastructure: Advanced district heating pipelines for ultra-high-temperature water (200–250 °C)—resists corrosion and heat degradation, ideal for large urban centers.

3. Manufacturing Techniques for EN 10CrMo9-10 Pressure Vessel Steel

Producing EN 10CrMo9-10 requires precise control over high chromium/molybdenum levels and specialized heat treatment. Voici le processus étape par étape:

  1. Acier:
    • Made using an Fournaise à arc électrique (EAF) (aligns with EU sustainability goals) ou Fournaise de base à l'oxygène (BOF) with ladle furnace refining. High-purity chromium (2.00–2,50%) et molybdène (0.90–1,10%) are added to ensure uniform alloy distribution—critical for performance.
  2. Roulement:
    • The steel is Chaud roulé (1,200 - 1,300 ° C) into plates (6 mm à 100+ mm d'épaisseur). Lent, controlled cooling during rolling preserves the alloy’s anti-corrosion and creep-resistant properties, avoiding grain coarsening.
  3. Traitement thermique (Mandatory Normalization + Tremper):
    • Normalization: Plates heated to 920 - 980 ° C, held 60–120 minutes (based on thickness), then air-cooled—evens out microstructure for consistent high-temperature strength.
    • Tremper: Reheated to 620 - 700 ° C, held 90–180 minutes, then air-cooled—reduces brittleness and locks in the alloy’s ultra-high-temperature creep resistance.
  4. Usinage & Finition:
    • Plates cut with high-precision plasma/laser tools (low heat input to avoid alloy degradation) to fit vessel sizes. Holes for nozzles are drilled with carbide tools, edges ground smooth for tight welds (critical for ultra-high-pressure sealing).
  5. Traitement de surface:
    • Revêtement (Facultatif):
      • Aluminum-Chromium Diffusion Coating: For ultra-high-heat boilers (>650 °C)—enhances creep resistance and oxidation protection.
      • Nickel-Based CRA Cladding: For extreme sour gas (>25% H₂S)—adds extra corrosion protection, compliant with EU REACH.
    • Peinture: For outdoor equipment—high-temperature, low-VOC paint (jusqu'à 300 ° C) to meet EU environmental standards.
  6. Contrôle de qualité:
    • Analyse chimique: High-precision mass spectrometry verifies chromium (2.00–2,50%) et molybdène (0.90–1,10%) levels—critical for alloy performance.
    • Tests mécaniques: Traction, impact (-20 ° C), and long-term creep tests (600 ° C, 10,000 heures) pour 10028-2.
    • NDT: Ultrasonic phased array testing (100% plate area) and radiographic testing (all welds) to detect micro-defects.
    • Hydrostatic Testing: Vessels pressure-tested (2.0× design pressure, 100 °C water) pour 90 minutes—no leaks = EU compliance for ultra-high-pressure service.

4. Études de cas: EN 10CrMo9-10 in Action

Real European projects showcase EN 10CrMo9-10’s ultra-demanding environment reliability.

Étude de cas 1: Supercritical Power Plant Boiler (Allemagne)

A German utility company needed a supercritical steam generator for a 1,200 MW power plant, opérant à 620 ° C et 25 MPA (3,600 psi). They chose EN 10CrMo9-10 plates (55 mm d'épaisseur) for its creep resistance and heat stability. Après 12 années de fonctionnement, the boiler has no signs of deformation or corrosion—its high chromium/molybdenum content has maintained efficiency, reducing fuel costs by 8% annually compared to older boiler materials. This project saved the company €600,000 vs. using nickel-based alloys.

Étude de cas 2: Sour Gas Reactor (Netherlands)

A Dutch petrochemical plant needed a reactor for processing high-concentration sour gas (22% H₂s) à 580 ° C et 18 MPA (2,600 psi). EN 10CrMo9-10 welded plates (40 mm d'épaisseur) were selected for their corrosion resistance and high-temperature strength. The reactor was installed in 2016 and has run without maintenance—its chromium content eliminated sulfide stress cracking, avoiding costly shutdowns. By choosing EN 10CrMo9-10 instead of high-nickel alloys, the plant cut upfront costs by 40%.

5. EN 10CrMo9-10 vs. Autres matériaux

How does EN 10CrMo9-10 compare to other high-performance pressure vessel steels?

MatérielSimilarities to EN 10CrMo9-10Différences clésMieux pour
EN 13CrMo4-5DANS 10028-2 acier en alliageLower chromium (0.70–1,10%) et molybdène (0.45–0.65%); poor ultra-high-temp performance; 30% moins cherMedium-heat projects (500–550 °C)
EN 16Mo3EN alloy steelNo chromium; poor corrosion resistance; 50% moins cherInland medium-heat projects (pas de corrosion)
SA387 Grade 91ASME high-alloy steelSimilar chromium (8.00–9.50%), higher molybdenum (0.85–1,05%); better creep; 25% pricierUltra-supercritical projects (>650 °C)
316L en acier inoxydableRésistant à la corrosionExcellent corrosion; poor creep above 550 ° C; 4× more expensiveCoastal low-heat vessels (≤ 550 ° C)
SA516 Grade 70ASME carbon steelNo alloying; useless at >480 °C; 70% moins cherInland warm-climate low-pressure projects

Yigu Technology’s Perspective on EN 10CrMo9-10

À la technologie Yigu, EN 10CrMo9-10 is our top recommendation for European ultra-high-temperature, high-pressure projects. Its high chromium-molybdenum combo solves the biggest pain points of supercritical power and advanced petrochemical clients—creep at 600+ °C and severe corrosion. We supply custom-thickness plates (6–100 mm) with optional diffusion coatings or CRA cladding, tailored to regions (Par exemple, German power plants get creep-tested plates). For clients moving from lower alloys to ultra-demanding service, it’s a cost-effective upgrade—outperforming EN 13CrMo4-5 without the premium of nickel-based alloys.

FAQ About EN 10CrMo9-10 Pressure Vessel Steel

  1. Can EN 10CrMo9-10 be used for ultra-supercritical projects above 650 ° C?
    Yes—with aluminum-chromium diffusion coating. The coating enhances oxidation resistance at 650–700 °C, while the alloy’s molybdenum maintains creep resistance. Always conduct long-term creep testing at your project’s maximum temperature first.
  2. Is EN 10CrMo9-10 harder to weld than EN 13CrMo4-5?
    Yes—needs higher preheating (250–350 °C vs. 200–300 °C for EN 13CrMo4-5) and high-alloy electrodes (Par exemple, E9018-B3). But with specialized welding procedures (Par exemple, post-weld heat treatment at 650 ° C), joints meet EN 13445 ultra-high-pressure standards—common for European expert
Faites défiler en haut