Si vous travaillez sur l'ultra haute température européenne, projets à haute pression, comme les chaudières supercritiques des centrales électriques, réacteurs pétrochimiques lourds, or sour gas processing equipment—you need a steel that resists both extreme heat creep and severe corrosion.EN 10CrMo9-10 pressure vessel steel is the top-tier solution: comme acier allié à haute teneur en chrome-molybdène selon EN 10028-2, its 2.00–2.50% chromium and 0.90–1.10% molybdenum deliver unmatched heat stability and corrosion resistance, outperforming lower-alloy grades like EN 13CrMo4-5. Ce guide détaille ses propriétés, utilisations réelles, processus de fabrication, and material comparisons to help you solve the most demanding harsh-environment equipment challenges.
1. Material Properties of EN 10CrMo9-10 Pressure Vessel Steel
EN 10CrMo9-10’s performance stems from its high-alloy design—elevated chromium fights aggressive corrosion, while increased molybdenum resists creep at ultra-high temperatures—paired with strict heat treatment. Let’s explore its key properties in detail.
1.1 Composition chimique
EN 10CrMo9-10 adheres to EN 10028-2, with precise control over high chromium and molybdenum levels to handle extreme conditions. Below is its typical composition (for plates ≤ 60 mm d'épaisseur):
| Élément | Symbole | Gamme de contenu (%) | Key Role |
|---|---|---|---|
| Carbone (C) | C | 0.08 – 0.15 | Enhances high-temperature strength; kept low to preservesoudabilité (critical for thick-walled ultra-high-pressure vessels) |
| Manganèse (Mn) | Mn | 0.40 – 0.70 | Boosterésistance à la traction without compromising high-temperatureductilité |
| Silicium (Et) | Et | 0.10 – 0.35 | Aids deoxidation; stabilizes the steel structure at 550–650 °C |
| Phosphore (P.) | P. | ≤ 0.025 | Minimized to prevent brittle fracture in cyclic ultra-high-temperature conditions |
| Soufre (S) | S | ≤ 0.015 | Strictly controlled to avoid weld defects (par ex., hot cracking) in high-heat fabrication |
| Chrome (Cr) | Cr | 2.00 – 2.50 | Core anti-corrosion element; resists aggressive steam oxidation, saltwater, and high-concentration sour gas (jusqu'à 25% H₂S) |
| Molybdène (Mo) | Mo | 0.90 – 1.10 | Core creep-resistant element; prevents deformation at 550–650 °C, critical for long-running supercritical equipment |
| Nickel (Dans) | Dans | ≤ 0.30 | Trace element; enhances low-temperatureimpact toughness (jusqu'à -20 °C) for cold-region startup |
| Vanadium (V) | V | ≤ 0.03 | Trace element; refines grain structure to improvelimite de fatigue under repeated ultra-high-temperature cycles |
| Cuivre (Cu) | Cu | ≤ 0.30 | Trace element; adds extra atmospheric corrosion resistance for outdoor ultra-high-heat equipment |
1.2 Propriétés physiques
These traits make EN 10CrMo9-10 ideal for European extreme-environment projects:
- Densité: 7.88 g/cm³ (slightly higher than lower-alloy steels due to high chromium/molybdenum; easy to calculate weight for large vessels like 20-meter diameter reactors)
- Point de fusion: 1,390 – 1,430 °C (2,534 – 2,606 °F)—compatible with advanced welding processes (TIG, submerged arc welding) for ultra-high-pressure vessel fabrication
- Conductivité thermique: 40.5 Avec(m·K) à 20 °C; 34.0 Avec(m·K) à 600 °C—ensures even heat distribution in supercritical boilers, reducing hot spots that cause stress cracking
- Coefficient de dilatation thermique: 11.6 × 10⁻⁶/°C (20 – 600 °C)—minimizes damage from extreme temperature swings (par ex., 20 °C to 650 °C in supercritical boiler operation)
- Propriétés magnétiques: Ferromagnetic—enables high-precision non-destructive testing (CND) like ultrasonic phased array to detect hidden defects in thick, heat-exposed plates.
1.3 Propriétés mécaniques
EN 10CrMo9-10’s mandatory normalization-and-tempering heat treatment ensures consistent performance at ultra-high temperatures. Below are typical values (pour EN 10028-2):
| Propriété | Méthode de mesure | Valeur typique (20 °C) | Valeur typique (600 °C) | EN Standard Minimum (20 °C) |
|---|---|---|---|---|
| Dureté (Rockwell) | HRB | 85 – 100 HRB | N / A | N / A (controlled to avoid brittleness) |
| Dureté (Vickers) | HT | 170 – 200 HT | N / A | N / A |
| Résistance à la traction | MPa | 510 – 650 MPa | 360 – 460 MPa | 510 MPa |
| Limite d'élasticité | MPa | 300 – 420 MPa | 200 – 280 MPa | 300 MPa |
| Élongation | % (dans 50 mm) | 20 – 26% | N / A | 20% |
| Résistance aux chocs | J. (à -20 °C) | ≥ 45 J. | N / A | ≥ 27 J. |
| Fatigue Limit | MPa (rotating beam) | 210 – 250 MPa | 160 – 200 MPa | N / A (tested per project needs) |
1.4 Autres propriétés
EN 10CrMo9-10’s unique traits solve the most demanding harsh-environment problems:
- Weldability: Good—requires preheating to 250–350 °C (to avoid high-alloy-induced weld cracks) and low-hydrogen, high-alloy electrodes (par ex., E9018-B3), but produces strong, corrosion-resistant joints for ultra-high-pressure service.
- Formabilité: Moderate—can be bent into curved supercritical boiler tubes or reactor walls (with precise temperature control) without losing alloy benefits.
- Résistance à la corrosion: Excellent—resists supercritical steam oxidation (650 °C), saltwater (coastal Europe), and high-concentration sour gas (jusqu'à 25% H₂S); minimal extra coating needed for most severe conditions.
- Ductilité: High—absorbs sudden pressure spikes (par ex., in petrochemical reactors) without fracturing, a critical safety feature for ultra-high-pressure equipment.
- Toughness: Superior—maintains strength at -20 °C (Scandinavian winters) et 650 °C (continuous supercritical operation), outperforming lower-alloy steels like EN 13CrMo4-5.
2. Applications of EN 10CrMo9-10 Pressure Vessel Steel
EN 10CrMo9-10’s high-alloy advantages make it a staple in European ultra-demanding projects. Here are its key uses:
- Pressure Vessels: Ultra-high-pressure sour gas reactors and supercritical chemical processing vessels—handles 16,000–20,000 psi and 550–650 °C, compliant with EN 13445.
- Boilers: Supercritical power plant steam generators (par ex., in Germany, France)—resists creep at 600–650 °C, maximizing energy efficiency for large-scale electricity production.
- Storage Tanks: High-temperature molten salt or heavy oil storage tanks—its heat resistance prevents deformation, while corrosion resistance avoids rust in aggressive media.
- Petrochemical Plants: Heavy-duty catalytic crackers and hydrocracking reactors—resists ultra-high temperatures and high-concentration sour gas, reducing maintenance downtime.
- Équipement industriel: Ultra-high-pressure steam valves and turbine casings—used in European advanced manufacturing (par ex., aerospace component heat treatment) for reliable harsh-service performance.
- Construction and Infrastructure: Advanced district heating pipelines for ultra-high-temperature water (200–250 °C)—resists corrosion and heat degradation, ideal for large urban centers.
3. Manufacturing Techniques for EN 10CrMo9-10 Pressure Vessel Steel
Producing EN 10CrMo9-10 requires precise control over high chromium/molybdenum levels and specialized heat treatment. Here’s the step-by-step process:
- Sidérurgie:
- Made using an Four à arc électrique (AEP) (aligns with EU sustainability goals) ou Four à oxygène de base (BOF) with ladle furnace refining. High-purity chromium (2.00–2.50%) and molybdenum (0.90–1.10%) are added to ensure uniform alloy distribution—critical for performance.
- Roulement:
- The steel is Laminé à chaud (1,200 – 1,300 °C) into plates (6 mm à 100+ mm d'épaisseur). Lent, controlled cooling during rolling preserves the alloy’s anti-corrosion and creep-resistant properties, avoiding grain coarsening.
- Traitement thermique (Mandatory Normalization + Trempe):
- Normalization: Plates heated to 920 – 980 °C, held 60–120 minutes (based on thickness), then air-cooled—evens out microstructure for consistent high-temperature strength.
- Trempe: Reheated to 620 – 700 °C, held 90–180 minutes, then air-cooled—reduces brittleness and locks in the alloy’s ultra-high-temperature creep resistance.
- Usinage & Finition:
- Plates cut with high-precision plasma/laser tools (low heat input to avoid alloy degradation) to fit vessel sizes. Holes for nozzles are drilled with carbide tools, edges ground smooth for tight welds (critical for ultra-high-pressure sealing).
- Traitement de surface:
- Revêtement (Facultatif):
- Aluminum-Chromium Diffusion Coating: For ultra-high-heat boilers (>650 °C)—enhances creep resistance and oxidation protection.
- Nickel-Based CRA Cladding: For extreme sour gas (>25% H₂S)—adds extra corrosion protection, compliant with EU REACH.
- Peinture: For outdoor equipment—high-temperature, low-VOC paint (jusqu'à 300 °C) to meet EU environmental standards.
- Revêtement (Facultatif):
- Contrôle de qualité:
- Chemical Analysis: High-precision mass spectrometry verifies chromium (2.00–2.50%) and molybdenum (0.90–1.10%) levels—critical for alloy performance.
- Mechanical Testing: Traction, impact (-20 °C), and long-term creep tests (600 °C, 10,000 heures) pour EN 10028-2.
- CND: Ultrasonic phased array testing (100% plate area) and radiographic testing (all welds) to detect micro-defects.
- Hydrostatic Testing: Vessels pressure-tested (2.0× design pressure, 100 °C water) pour 90 minutes—no leaks = EU compliance for ultra-high-pressure service.
4. Études de cas: EN 10CrMo9-10 in Action
Real European projects showcase EN 10CrMo9-10’s ultra-demanding environment reliability.
Étude de cas 1: Supercritical Power Plant Boiler (Allemagne)
A German utility company needed a supercritical steam generator for a 1,200 MW power plant, operating at 620 °C and 25 MPa (3,600 psi). They chose EN 10CrMo9-10 plates (55 mm d'épaisseur) for its creep resistance and heat stability. Après 12 years of operation, the boiler has no signs of deformation or corrosion—its high chromium/molybdenum content has maintained efficiency, reducing fuel costs by 8% annually compared to older boiler materials. This project saved the company €600,000 vs. using nickel-based alloys.
Étude de cas 2: Sour Gas Reactor (Netherlands)
A Dutch petrochemical plant needed a reactor for processing high-concentration sour gas (22% H₂S) à 580 °C and 18 MPa (2,600 psi). EN 10CrMo9-10 welded plates (40 mm d'épaisseur) were selected for their corrosion resistance and high-temperature strength. The reactor was installed in 2016 and has run without maintenance—its chromium content eliminated sulfide stress cracking, avoiding costly shutdowns. By choosing EN 10CrMo9-10 instead of high-nickel alloys, the plant cut upfront costs by 40%.
5. EN 10CrMo9-10 vs. Other Materials
How does EN 10CrMo9-10 compare to other high-performance pressure vessel steels?
| Matériel | Similarities to EN 10CrMo9-10 | Différences clés | Idéal pour |
|---|---|---|---|
| EN 13CrMo4-5 | DANS 10028-2 acier allié | Lower chromium (0.70–1.10%) and molybdenum (0.45–0.65%); poor ultra-high-temp performance; 30% moins cher | Medium-heat projects (500–550 °C) |
| EN 16Mo3 | EN alloy steel | No chromium; poor corrosion resistance; 50% moins cher | Inland medium-heat projects (pas de corrosion) |
| SA387 Grade 91 | ASME high-alloy steel | Similar chromium (8.00–9.50%), higher molybdenum (0.85–1,05%); better creep; 25% pricier | Ultra-supercritical projects (>650 °C) |
| 316L Stainless Steel | Résistant à la corrosion | Excellent corrosion; poor creep above 550 °C; 4× more expensive | Coastal low-heat vessels (≤ 550 °C) |
| Catégorie SA516 70 | ASME carbon steel | No alloying; useless at >480 °C; 70% moins cher | Inland warm-climate low-pressure projects |
Yigu Technology’s Perspective on EN 10CrMo9-10
Chez Yigu Technologie, EN 10CrMo9-10 is our top recommendation for European ultra-high-temperature, high-pressure projects. Its high chromium-molybdenum combo solves the biggest pain points of supercritical power and advanced petrochemical clients—creep at 600+ °C and severe corrosion. We supply custom-thickness plates (6–100 mm) with optional diffusion coatings or CRA cladding, tailored to regions (par ex., German power plants get creep-tested plates). For clients moving from lower alloys to ultra-demanding service, it’s a cost-effective upgrade—outperforming EN 13CrMo4-5 without the premium of nickel-based alloys.
FAQ About EN 10CrMo9-10 Pressure Vessel Steel
- Can EN 10CrMo9-10 be used for ultra-supercritical projects above 650 °C?
Yes—with aluminum-chromium diffusion coating. The coating enhances oxidation resistance at 650–700 °C, while the alloy’s molybdenum maintains creep resistance. Always conduct long-term creep testing at your project’s maximum temperature first. - Is EN 10CrMo9-10 harder to weld than EN 13CrMo4-5?
Yes—needs higher preheating (250–350 °C vs. 200–300 °C for EN 13CrMo4-5) and high-alloy electrodes (par ex., E9018-B3). But with specialized welding procedures (par ex., post-weld heat treatment at 650 °C), joints meet EN 13445 ultra-high-pressure standards—common for European expert
