DANS 1.3343 Acier rapide: Propriétés, Fabrication pour une découpe de précision

Fabrication de pièces métalliques sur mesure

Si vous travaillez avec un usinage à grande vitesse ou si vous avez besoin d'outils qui restent affûtés sous la chaleur et la pression, DANS 1.3343 l’acier rapide change la donne. Cet alliage est conçu pour les tâches de coupe difficiles, du fraisage des métaux durs au perçage de trous de précision, grâce à sa dureté rouge et sa résistance à l'usure exceptionnelles.. Dans ce guide, nous allons décomposer ses propriétés clés, applications du monde réel, comment […]

Si vous travaillez avec un usinage à grande vitesse ou si vous avez besoin d'outils qui restent affûtés sous la chaleur et la pression, DANS 1.3343 high speed steel change la donne. This alloy is built for tough cutting tasks—from milling hard metals to drilling precision holes—thanks to its exceptionaldureté rouge et résistance à l'usure. Dans ce guide, nous allons décomposer ses propriétés clés, applications du monde réel, comment c'est fait, and how it compares to other cutting materials. À la fin, you’ll know if it’s the right choice for your high-performance tool needs.

1. Material Properties of EN 1.3343 Acier rapide

EN 1.3343’s reputation as a top-tier high speed steel comes from its carefully balanced composition and standout properties. Let’s break this into four critical areas:

1.1 Composition chimique

The elements in EN 1.3343 work together to boost heat resistance, dureté, and durability—essential for high-speed cutting. Below is its typical composition (per EN standards):

ÉlémentGamme de contenu (%)Key Role
Carbone (C)0.80 – 0.90Forms hard carbides with other elements, boosting wear resistance.
Manganèse (Mn)0.15 – 0.40Improves hardenability and reduces brittleness during heat treatment.
Silicium (Et)0.15 – 0.40Enhances strength and resistance to oxidation at high temperatures.
Chrome (Cr)3.80 – 4.50Supports carbide formation and improvestrempabilité; augmente la résistance à la corrosion.
Tungsten (W)5.50 – 6.75A key element fordureté rouge—retains strength at 600+ °C, critical for high-speed cutting.
Molybdène (Mo)4.50 – 5.50Works with tungsten to enhance red hardness and reduce brittleness.
Vanadium (V)1.70 – 2.20Forms ultra-hard vanadium carbides, improving edge retention and wear resistance.
Cobalt (Co)4.50 – 5.50Further boosts red hardness and high-temperature stability.
Soufre (S)≤ 0.030Minimized to avoid weakening the steel and reducing tool life.
Phosphore (P.)≤ 0.030Kept low to prevent brittleness, especially under high heat.

1.2 Propriétés physiques

These properties determine how EN 1.3343 behaves during machining and tool use—like heat transfer or dimensional stability. All values are measured at room temperature unless stated:

  • Densité: 8.10 g/cm³ (slightly higher than standard steels, due to tungsten and cobalt content).
  • Point de fusion: 1420 – 1480 °C (high enough to withstand forging and heat treatment without melting).
  • Conductivité thermique: 25 Avec(m·K) (lower than carbon steel, which helps retain heat in the tool edge during cutting).
  • Coefficient de dilatation thermique: 11.0 × 10⁻⁶/°C (depuis 20 à 600 °C; low expansion means tools keep their shape during high-speed cutting).
  • Specific Heat Capacity: 450 J/(kg·K) (efficient at absorbing heat, reducing the risk of overheating during prolonged use).

1.3 Propriétés mécaniques

EN 1.3343’s mechanical properties are optimized for cutting tools—prioritizing hardness, edge retention, et résistance à la chaleur. Below are its typical properties after standard heat treatment (trempe + trempe):

PropriétéValeur typiqueTest StandardWhy It Matters
Dureté (CRH)63 – 66EN ISO 6508Ultra-high hardness ensures excellent edge retention (critique pourmilling cutters ouexercices).
Résistance à la traction≥ 2400 MPaEN ISO 6892Handles high cutting forces without breaking—ideal for machining hard materials.
Limite d'élasticité≥ 2000 MPaEN ISO 6892Resists permanent deformation, so tools keep their cutting geometry.
Élongation≤ 5%EN ISO 6892Low ductility (expected for hard high speed steels; a trade-off for hardness).
Résistance aux chocs (Charpy V-notch)≥ 12 J. (à 20 °C)EN ISO 148-1Moderate toughness—avoids brittle fracture during light shock (par ex., tool loading).
Red HardnessRetains 90% hardness at 600 °CEN ISO 6508Lets tools cut at high speeds (30–50 m/min for steel) without softening.
Fatigue Strength~900 MPa (10⁷ cycles)EN ISO 13003Resists failure from repeated cutting cycles (key for high-volume machining).

1.4 Autres propriétés

  • Résistance à la corrosion: Modéré. Chromium content helps resist rust in workshop environments, but avoid long exposure to chemicals or moisture.
  • Résistance à l'usure: Excellent. Tungsten, vanadium, and cobalt carbides create a hard surface that resists abrasive wear—even when machining hard materials like stainless steel or alloy steel.
  • Usinabilité: Pauvre (in hardened state). It’s extremely hard to machine after heat treatment, so most shaping is done when the steel is annealed (softened to HRC 24–28).
  • Trempabilité: Excellent. It hardens evenly across thick sections (jusqu'à 30 mm), so large tools like gear cutting tools have consistent performance.
  • High-temperature Stability: Outstanding. It maintains strength and hardness at temperatures up to 650 °C—far better than standard tool steels or carbon steel.

2. Applications of EN 1.3343 Acier rapide

EN 1.3343’s red hardness and wear resistance make it ideal for high-speed, high-heat cutting tasks. Voici ses utilisations les plus courantes, avec des exemples réels:

2.1 Outils de coupe

  • Exemples: Milling cutters, outils de tournage, exercices, et alésoirs for machining metals like alloy steel, acier inoxydable, or cast iron.
  • Why it works: Red hardness lets tools cut at high speeds without softening. A German machine shop used EN 1.3343 milling cutters for alloy steel parts—tool life increased by 200% contre. standard high speed steel (HSS).

2.2 Broaches

  • Exemples: Internal or external broaches for creating complex shapes (par ex., splines or keyways) in metal parts.
  • Why it works: Wear resistance keeps broach teeth sharp through hundreds of cuts. Un États-Unis. automotive supplier used EN 1.3343 broaches for gear splines—broach life jumped from 5,000 à 15,000 parties.

2.3 Gear Cutting Tools

  • Exemples: Hob cutters or shaping tools for manufacturing gears (automotive or industrial).
  • Why it works: Precision edge retention ensures gear teeth have accurate geometry. A Japanese gear maker used EN 1.3343 hob cutters—gear quality improved (fewer surface defects) and tool changes dropped by 60%.

2.4 Machining of Hard Materials

  • Exemples: Tools for machining hardened steel (up to HRC 45), acier inoxydable, or heat-resistant alloys (par ex., Inconel).
  • Why it works: Ultra-hard carbides resist wear from tough materials. A Chinese aerospace manufacturer used EN 1.3343 drills for Inconel parts—drill life increased from 20 à 80 holes per tool.

3. Manufacturing Techniques for EN 1.3343 Acier rapide

Turning EN 1.3343 into high-performance tools requires precise, specialized steps. Voici une ventilation étape par étape:

  1. Fusion: Matières premières (iron, tungstène, cobalt, etc.) are melted in an electric arc furnace (AEP) or induction furnace at 1550–1650 °C. This ensures uniform mixing of high-value elements like tungsten and cobalt.
  2. Fonderie: Molten steel is poured into ingot molds (small sizes, 5–20 kg) to avoid internal defects. Refroidissement lent (10–20 °C/hour) prevents carbide segregation.
  3. Forgeage: Ingots are heated to 1100–1180 °C and hammered or pressed into tool blanks (par ex., 10x10x100 mm for drill bits). Forging breaks up large carbides, improving tool strength.
  4. Traitement thermique: The most critical step for maximizing performance:
    • Recuit: Heat to 850–900 °C, hold 2–4 hours, cool slowly. Softens steel to HRC 24–28 for machining.
    • Préchauffage: Heat to 800–850 °C, prise 1 heure. Prepares the steel for quenching.
    • Austenitizing: Heat to 1200–1240 °C, hold 15–30 minutes. Critical for dissolving carbides.
    • Trempe: Cool rapidly in oil or air (depending on tool size). Hardens steel to HRC 64–67.
    • Trempe: Reheat to 540–580 °C, hold 1–2 hours, cool. Repeat 2–3 times. Reduces brittleness and sets final hardness (HRC 63–66).
  5. Usinage: Most shaping (fraisage, forage, affûtage) is done before quenching (annealed state). Carbide tools or diamond grinders are used for post-quenching finishing.
  6. Affûtage: Precision grinding (CNC grinders) creates sharp cutting edges and tight tolerances (±0.001 mm for drills or reamers).
  7. Traitement de surface (Facultatif):
    • Revêtement: Add TiN (nitrure de titane) or TiAlN (titanium aluminum nitride) coatings to boost wear resistance by 50–100%.
    • Nitruration: Creates a hard surface layer (CRH 70+) for tools needing extra wear protection.

4. Étude de cas: DANS 1.3343 in Milling Cutters for Hardened Steel

A European automotive parts manufacturer faced a problem: their standard HSS milling cutters were wearing out every 500 parts when machining hardened steel (CRH 40) moyeux à engrenages. They switched to EN 1.3343 cutters (coated with TiAlN), and here’s what happened:

  • Processus: Cutters were forged, recuit, machined to shape, traité thermiquement (1220 °C quenching + 560 °C tempering), ground to sharp edges, and coated with TiAlN.
  • Résultats:
    • Cutter life increased to 2,000 parties (300% amélioration) thanks to EN 1.3343’s red hardness and TiAlN coating.
    • Machining speed increased from 25 à 40 m/mon (60% plus rapide), reducing production time.
    • Part quality improved: gear hubs had smoother surfaces (Râ 0.8 μm vs. 1.6 μm with old cutters).
  • Why it worked: EN 1.3343’s tungsten and cobalt retained hardness at the high cutting temperatures (500+ °C), while the TiAlN coating reduced friction between the cutter and steel—minimizing wear.

5. DANS 1.3343 contre. Other Cutting Materials

How does EN 1.3343 stack up against common alternatives? Let’s compare key properties for cutting tools:

MatérielDureté (CRH)Red Hardness (600 °C)Résistance à l'usureUsinabilitéCoût (contre. DANS 1.3343)Idéal pour
DANS 1.3343 Acier rapide63 – 66ExcellentExcellentPauvre (endurci)100%High-speed cutting of hard metals
Standard HSS (DANS 1.3340)60 – 63BienBienÉquitable (endurci)60%General cutting (acier doux)
Outils en carbure85 – 90 (HT)ExcellentVery GoodVery Poor300%Ultra-high-speed cutting (50+ m/mon)
Outils en céramique90 – 95 (HT)OutstandingVery GoodExtremely Poor500%Machining super-alloys (par ex., Inconel)
Acier au carbone (1095)55 – 60PauvrePauvreExcellent20%Low-speed cutting (soft materials)
Acier allié (4140)30 – 40Very PoorÉquitableExcellent30%Non-cutting tools (par ex., porte-outils)

Key takeaway: DANS 1.3343 offers the best balance of red hardness, résistance à l'usure, and cost for high-speed cutting of hard metals. It’s cheaper than carbide or ceramic tools and more durable than standard HSS or carbon steel.

Yigu Technology’s View on EN 1.3343 Acier rapide

Chez Yigu Technologie, DANS 1.3343 is our top choice for clients needing tools that perform in high-speed, high-heat machining. Its unique carbide blend solves the common issue of tool softening—critical for machining hard materials like stainless steel or alloy steel. We often pair it with TiAlN coatings to extend tool life further, helping clients cut costs and boost productivity. Pour l'automobile, aérospatial, or industrial manufacturers, DANS 1.3343 isn’t just a tool material—it’s a way to achieve consistent, high-quality results in demanding applications.

FAQ About EN 1.3343 Acier rapide

1. Can EN 1.3343 be used for machining non-metallic materials (par ex., plastics or wood)?

While EN 1.3343 is technically capable, it’s overkill for non-metallic materials. Its high hardness and red hardness are designed for metal cutting, and using it for plastics/wood would be costly and unnecessary. Pour les non-métaux, choose standard HSS or carbon steel tools instead.

2. What’s the best coating for EN 1.3343 outils?

For most applicationsTiAlN (titanium aluminum nitride) is the best choice. It resists high temperatures (jusqu'à 800 °C) and reduces friction, making it ideal for high-speed cutting of steel or stainless steel. For machining aluminum, use TiCN (titanium carbonitride) to prevent material buildup on the tool edge.

3. Is EN 1.3343 more expensive than standard HSS?

Oui, DANS 1.3343 costs about 60–70% more than standard HSS (par ex., DANS 1.3340) due to its cobalt and tungsten content. But it’s worth the investment: DANS 1.3343 tools last 2–3x longer, reduce downtime from tool changes, and let you machine at faster speeds—saving money in the long run.

Indice
Faire défiler vers le haut