Si vous recherchez un acier à outils capable de supporter la chaleur, résister à l'usure, et fonctionnent de manière fiable dans les applications difficiles, DANS 1.2080 acier à outils is worth a closer look. Cet alliage polyvalent est un favori dans des industries comme l'automobile, aérospatial, et la fabrication, mais qu'est-ce qui le distingue des autres matériaux? Dans ce guide, nous allons décomposer ses propriétés clés, applications du monde réel, étapes de fabrication, and how it compares to alternatives. À la fin, you’ll know if it’s the right choice for your next project.
1. Material Properties of EN 1.2080 Acier à outils
EN 1.2080’s performance comes from its unique mix of elements and carefully balanced properties. Let’s break this down into four key areas:
1.1 Composition chimique
The elements in EN 1.2080 work together to boost its strength, résistance à la chaleur, et durabilité. Below is its typical composition (per EN standards):
| Élément | Gamme de contenu (%) | Key Role |
|---|---|---|
| Carbone (C) | 0.95 – 1.10 | Hardens the steel and helps form wear-resistant carbides. |
| Manganèse (Mn) | 0.20 – 0.40 | Improves hardenability and reduces brittleness during heat treatment. |
| Silicium (Et) | 0.15 – 0.35 | Enhances strength and resistance to oxidation at high temperatures. |
| Chrome (Cr) | 1.30 – 1.60 | Boosts corrosion resistance and hardenability; supports carbide formation. |
| Molybdène (Mo) | 0.15 – 0.25 | Increases high-temperature strength and prevents grain growth. |
| Vanadium (V) | 0.10 – 0.20 | Improves wear resistance and edge retention by forming hard vanadium carbides. |
| Tungsten (W) | 0.10 – 0.20 | Enhances heat resistance, making it suitable for high-temperature tools. |
| Cobalt (Co) | ≤ 0.10 | A trace element that slightly boosts strength (kept low for cost efficiency). |
| Soufre (S) | ≤ 0.030 | Minimized to avoid weakening the steel and reducing toughness. |
| Phosphore (P.) | ≤ 0.030 | Kept low to prevent brittleness, especially in cold conditions. |
1.2 Propriétés physiques
These properties affect how EN 1.2080 behaves in different environments—like high heat or pressure. All values are measured at room temperature unless stated:
- Densité: 7.85 g/cm³ (similar to most steel alloys, making it easy to calculate part weights).
- Point de fusion: 1420 – 1480 °C (high enough to withstand hot manufacturing processes like forging).
- Conductivité thermique: 28 Avec(m·K) (better than some tool steels, so it transfers heat more evenly).
- Coefficient de dilatation thermique: 12.0 × 10⁻⁶/°C (depuis 20 à 600 °C; low expansion means less warping when heated/cooled).
- Specific Heat Capacity: 470 J/(kg·K) (efficient at absorbing and releasing heat, useful for tools that cycle between hot and cold).
1.3 Propriétés mécaniques
Mechanical properties determine how EN 1.2080 holds up under stress—like cutting, estampillage, or heavy loads. These values are typical after standard heat treatment (trempe + tempering at 200 °C):
| Propriété | Valeur typique | Test Standard | Pourquoi c'est important |
|---|---|---|---|
| Dureté (CRH) | 58 – 62 | EN ISO 6508 | High hardness means the tool retains its edge and resists wear (critical for cutting tools). |
| Résistance à la traction | ≥ 1900 MPa | EN ISO 6892 | Handles high pulling forces without breaking—ideal for load-bearing machine parts. |
| Limite d'élasticité | ≥ 1700 MPa | EN ISO 6892 | Resists permanent deformation, so tools keep their shape during use. |
| Élongation | ≤ 4% | EN ISO 6892 | Low ductility (normal for hard tool steels; a trade-off for high hardness). |
| Résistance aux chocs (Charpy V-notch) | ≥ 18 J. (à 20 °C) | EN ISO 148-1 | Moderate toughness—prevents brittle fracture in shock-loaded applications. |
| Fatigue Strength | ~750 MPa (10⁷ cycles) | EN ISO 13003 | Resists failure from repeated stress (key for high-cycle tools like punches). |
1.4 Autres propriétés
- Résistance à la corrosion: Bien. The chromium content helps it resist rust in mild environments (par ex., workshop air), but it’s not fully stainless—avoid long exposure to chemicals.
- Résistance à l'usure: Excellent. Carbon and vanadium form hard carbides that protect against abrasive wear (perfect for dies and cutting tools).
- Usinabilité: Équitable. It’s harder to machine than low-carbon steel, but annealing (heating to 800–850 °C and cooling slowly) softens it to HRC 22–26, making machining easier.
- Trempabilité: Very good. It hardens evenly across thick sections (jusqu'à 40 mm), so large tools have consistent performance.
- Red Hardness: Fort. It retains hardness at high temperatures (jusqu'à 450 °C), making it suitable for hot working tools like extrusion dies.
2. Applications of EN 1.2080 Acier à outils
EN 1.2080’s mix of heat resistance, résistance à l'usure, and toughness makes it useful in many industries. Voici ses utilisations les plus courantes, avec des exemples réels:
2.1 Outils de coupe
- Exemples: Forets, robinets, fraises en bout, and saw blades for machining metals (par ex., acier, aluminium).
- Why it works: Haute dureté (HRC 58–62) keeps edges sharp, even after thousands of cuts. Un États-Unis. machine shop reported that EN 1.2080 drills lasted 25% longer than standard high-speed steel (HSS) drills when machining mild steel.
2.2 Dies and Molds
- Exemples: Cold stamping dies (for making metal brackets), hot extrusion dies (for aluminum profiles), et moules d'injection plastique (pour pièces à grand volume).
- Why it works: Its red hardness resists heat damage in hot dies, while wear resistance prevents die degradation. A Chinese manufacturer used EN 1.2080 for aluminum extrusion dies and saw die life increase from 50,000 à 120,000 parties.
2.3 Machine Parts
- Exemples: Poinçons, shear blades, and gear teeth for industrial machinery.
- Why it works: High tensile strength handles heavy loads, and fatigue resistance prevents failure from repeated use. A German factory used EN 1.2080 shear blades to cut steel sheets—blade life doubled compared to alloy steel blades.
2.4 Automotive and Aerospace Components
- Exemples: Sièges de soupape (moteurs automobiles) and small turbine parts (aérospatial).
- Why it works: Red hardness lets it withstand high temperatures in engines and turbines. A Japanese auto parts maker tested EN 1.2080 valve seats in gasoline engines—they lasted 60,000+ miles without wear.
2.5 Hot Working Tools
- Exemples: Forging dies, hot upsetting dies, and heat treatment fixtures.
- Why it works: It retains hardness at 450 °C, so it doesn’t soften under the heat of hot metal. A Indian forging shop used EN 1.2080 dies for forging steel bolts—die maintenance dropped by 30%.
3. Manufacturing Techniques for EN 1.2080 Acier à outils
Turning EN 1.2080 into usable parts requires careful steps. Voici une ventilation étape par étape:
- Fusion: Matières premières (iron, carbone, chrome, etc.) are melted in an electric arc furnace (AEP) at 1500–1600 °C. This ensures all elements mix evenly.
- Fonderie: Molten steel is poured into molds to make ingots (gros blocs) or near-net-shape parts. Slow cooling prevents cracks.
- Forgeage: Ingots are heated to 1100–1200 °C and pressed/hammered into shapes (par ex., die blanks). Forging improves grain structure, making the steel stronger.
- Traitement thermique: The most important step—standard cycle:
- Recuit: Heat to 800–850 °C, hold 2–4 hours, cool slowly. Softens steel for machining.
- Trempe: Heat to 950–1050 °C, hold 1–2 hours, tremper dans l'huile. Hardens steel to HRC 60–63.
- Trempe: Reheat to 180–250 °C (for cold tools) or 400–450 °C (for hot tools), hold 1–3 hours, cool. Reduces brittleness and sets final hardness.
- Affûtage: Après traitement thermique, parts are ground to precise sizes (par ex., 0.001 mm tolerance for cutting tools). This removes surface flaws and improves finish.
- Usinage: Forage, fraisage, or turning—done before quenching (when steel is soft). Use carbide tools for best results.
- Traitement de surface: Optional steps like nitriding (adds a hard surface layer) ou revêtement (par ex., TiAlN) to boost wear resistance even more.
4. Étude de cas: DANS 1.2080 in Hot Extrusion Dies
A European aluminum manufacturer had a problem: their alloy steel extrusion dies for making window frames were failing after 50,000 parts due to heat softening. They switched to EN 1.2080, and here’s what happened:
- Processus: The dies were forged, recuit (CRH 24), machined to shape, quenched (1000 °C), tempered (420 °C), and ground to tolerance.
- Résultats:
- Die life jumped to 120,000 parties (140% amélioration).
- Downtime dropped by 50% (fewer die changes).
- Extruded parts had smoother surfaces (thanks to EN 1.2080’s even hardness).
- Pourquoi ça a marché: EN 1.2080’s red hardness kept the die hard at 400 °C (the temperature of molten aluminum), while its wear resistance prevented scratches from the aluminum.
5. DANS 1.2080 contre. Autres matériaux
How does EN 1.2080 compare to common alternatives? Let’s look at key properties:
| Matériel | Dureté (CRH) | Résistance à l'usure | Red Hardness | Résistance à la corrosion | Coût (contre. DANS 1.2080) | Idéal pour |
|---|---|---|---|---|---|---|
| DANS 1.2080 Acier à outils | 58 – 62 | Excellent | Fort | Bien | 100% | Hot/cold dies, outils de coupe |
| High-Speed Steel (HSS) | 60 – 65 | Very Good | Very Strong | Pauvre | 90% | High-speed cutting (par ex., fraisage) |
| Acier inoxydable (304) | 20 – 25 | Pauvre | Weak | Excellent | 130% | Corrosion-prone parts (not tools) |
| Acier au carbone (1095) | 55 – 60 | Bien | Weak | Pauvre | 50% | Faible coût, low-heat tools |
| Hot Work Tool Steel (DANS 1.2344) | 45 – 50 | Very Good | Excellent | Équitable | 150% | High-temperature dies (par ex., forger) |
| Acier allié (4140) | 30 – 40 | Équitable | Weak | Équitable | 70% | Pièces structurelles (not tools) |
Key takeaway: DANS 1.2080 offers a better balance of wear resistance and red hardness than carbon or alloy steel. It’s cheaper than dedicated hot work tool steel (DANS 1.2344) while still handling moderate high-temperature tasks.
Yigu Technology’s View on EN 1.2080 Acier à outils
Chez Yigu Technologie, DANS 1.2080 is a go-to for clients needing versatile tool steel. Its ability to perform in both cold and moderate hot applications makes it a cost-effective choice—no need to stock two separate steels for different tools. We often recommend it for extrusion dies and cutting tools, as its wear resistance and red hardness reduce downtime and boost productivity. For clients needing extra corrosion resistance, we pair it with our surface coating services to extend part life even further. It’s a reliable alloy that delivers consistent results across industries.
FAQ About EN 1.2080 Acier à outils
1. Can EN 1.2080 be used for tools that reach temperatures above 450 °C?
Non, EN 1.2080’s red hardness only holds up to 450 °C. For tools that need to handle higher temperatures (par ex., 600 °C in forging), choose a dedicated hot work tool steel like EN 1.2344.
2. What’s the best way to machine EN 1.2080?
Machine EN 1.2080before quenching (when it’s annealed to HRC 22–26). Use carbide cutting tools with low feed rates (0.1–0.2 mm/rev) and high cutting speeds (100–150 m/min) for best results. Avoid machining after quenching—it’s too hard and will damage tools.
3. Is EN 1.2080 suitable for making plastic injection molds?
Oui! Its wear resistance prevents degradation from repeated plastic flow, and its hardness (HRC 58–62) keeps mold surfaces smooth. A common practice is to temper it to HRC 50–55 for injection molds—this balances hardness and toughness to avoid cracking.
