Éléments de l'usinage CNC: Maîtriser la vitesse de coupe, Alimentation, Profondeur pour la précision

usinage CNC de polysulfone psu

L'usinage CNC s'appuie sur trois éléments fondamentaux pour fournir des performances efficaces., des résultats de haute qualité: vitesse de coupe, avance de l'outil, et profondeur de coupe. Ces éléments sont comme le « moteur, transmission, et le carburant »d'une voiture - chacun fonctionne indépendamment mais doit être équilibré pour éviter des erreurs comme l'endommagement des outils, mauvais état de surface, ou du temps perdu. Ce guide décompose chacun […]

L'usinage CNC s'appuie sur trois éléments fondamentaux pour fournir des performances efficaces., des résultats de haute qualité: vitesse de coupe, avance de l'outil, et depth of cut. Ces éléments sont comme le « moteur, transmission, et le carburant »d'une voiture - chacun fonctionne indépendamment mais doit être équilibré pour éviter des erreurs comme l'endommagement des outils, mauvais état de surface, ou du temps perdu. Ce guide décompose chacun element of CNC machining, solves common parameter-setting problems, and helps you optimize them for your specific project.

1. Cutting Speed: The “Speed Limit” for Tool and Material

Cutting speed is the speed at which the workpiece or tool moves relative to each other during machining (measured in m/min or ft/min). It directly impacts how fast you can machine a part—and how long your tool lasts.

1.1 Key Factors That Determine Cutting Speed

Cutting speed isn’t one-size-fits-all. It depends on three critical factors:

  • Tool Material: Harder tools handle faster speeds. Outils en carbure (common in industrial CNC) can run 3–5x faster than high-speed steel (HSS) outils.
  • Workpiece Material: Matériaux souples (par ex., aluminium) allow faster speeds than hard materials (par ex., acier inoxydable).
  • Machining Conditions: Wet machining (with coolant) lets you increase speed by 20–30% (coolant reduces heat and tool wear).

The table below shows recommended cutting speeds for common tool-workpiece pairs:

Tool MaterialWorkpiece MaterialDry Machining Speed (m/mon)Wet Machining Speed (m/mon)
CarbureAluminium300–500400–600
CarbureAcier inoxydable80–120100–150
HSSAluminium100–150120–180
HSSAcier inoxydable20–4030–50

1.2 Common Problem Solved: “Why is my tool wearing out too fast

You’re likely using a cutting speed that’s too high for your tool-workpiece pair. Par exemple:

  • If you run a carbide tool on stainless steel at 200 m/mon (sec), the tool will overheat and wear out in 30 minutes.
  • Lower the speed to 100 m/mon (sec), and the tool lasts 4–6 hours—saving you money on tool replacements.

2. Tool Feed: Balancing Surface Quality and Efficiency

Tool feed is the distance the tool moves along the workpiece per revolution (measured in mm/rev or inches/rev). It controls two key outcomes: rugosité de la surface (how smooth the part is) and machining time.

2.1 How to Choose Tool Feed

The right feed rate depends on whether you’re doing rough machining (removing material quickly) ou finish machining (creating a smooth surface):

  • Usinage grossier: Use a larger feed rate (0.2–0.5 mm/rev) to remove material fast. Par exemple, when cutting a 100mm aluminum block down to 80mm, un 0.4 mm/rev feed cuts the block in 5 minutes (contre. 10 minutes with a 0.2 mm/rev feed).
  • Finition de l'usinage: Use a smaller feed rate (0.05–0.15 mm/rev) pour surfaces lisses. UN 0.1 mm/rev feed on a stainless steel part creates a surface roughness (Râ) de 1.6 μm—smooth enough for visible parts like consumer electronics.

2.2 Critical Considerations

  • Machine Power: A weak CNC machine (low horsepower) can’t handle large feed rates—too much feed will stall the spindle.
  • Tool Rigidity: Long, thin tools need smaller feeds (0.05–0.1 mm/rev) to avoid vibration (which ruins surface quality). Court, thick tools can handle larger feeds.

Exemple: A user is finish-machining a aluminum phone case. They start with a 0.2 mm/rev feed and get a rough surface (Râ 6.3 µm). They lower the feed to 0.1 mm/rev, and the surface becomes smooth (Râ 1.6 µm)—perfect for a consumer product.

3. Depth of Cut: Minimizing Passes Without Breaking Tools

Depth of cut is the distance the tool penetrates into the workpiece per pass (measured in mm or inches). It’s all about efficiency—using a larger depth reduces the number of passes, but too much depth can damage the tool or workpiece.

3.1 Rules for Choosing Depth of Cut

Follow these guidelines to avoid mistakes:

  1. Prioritize Large Depths (When Possible): On rough machining, use the largest depth your tool and machine can handle. For a carbide tool cutting aluminum, a 5–10 mm depth per pass is safe—this cuts a 50mm thick block in 5–10 passes (contre. 25 passes with a 2 mm profondeur).
  2. Limit Depth for Hard Materials: For stainless steel or titanium, keep depth under 2–3 mm per pass (hard materials put more stress on tools).
  3. Finish Machining Needs Small Depths: Use a 0.1–0.5 mm depth for finish passes—this removes small imperfections without altering the part’s dimensions.

3.2 Common Problem Solved: “Why is my workpiece deforming during machining

You’re using a depth of cut that’s too large for the workpiece’s rigidity. Par exemple:

  • A thin aluminum sheet (2mm d'épaisseur) can’t handle a 1.5 mm depth of cut—the sheet will bend under the tool’s force.
  • Reduce the depth to 0.5 mm per pass, and the sheet stays flat—ensuring the final part meets your size requirements.

4. How to Balance the Three Elements: Un guide étape par étape

The biggest challenge isn’t setting each element individually—it’s balancing them to get fast, des résultats de haute qualité. Follow this process:

  1. Start with Cutting Speed: Pick a speed based on your tool and workpiece (use the table in Section 1.1). Par exemple: Carbide tool + aluminum = 400 m/mon (wet).
  2. Choose Tool Feed: Match feed to machining type. Rough machining = 0.3 mm/rev; finish machining = 0.1 mm/rev.
  3. Set Depth of Cut: Use the largest safe depth. For rough machining: 8 mm per pass (aluminium); for finish machining: 0.3 mm per pass.
  4. Test and Adjust: Run a small test part. If the tool wears fast, lower the speed. If the surface is rough, reduce the feed. If the part deforms, decrease the depth.

Exemple: A manufacturer needs to machine 100 supports en aluminium. They balance the elements as follows:

  • Cutting Speed: 400 m/mon (carbure + wet machining).
  • Tool Feed: 0.3 mm/rev (rugueux) 0.1 mm/rev (finition).
  • Depth of Cut: 8 mm (rugueux) 0.3 mm (finition).

Résultat: Each bracket takes 12 minutes to make (contre. 20 minutes with unbalanced settings), and the tools last 8 heures.

5. Real-World Scenarios: Applying the Elements to Common Projects

See how the three elements work together for different CNC jobs:

ProjectTool/WorkpieceCutting Speed (m/mon)Tool Feed (mm/rev)Depth of Cut (mm)Machining Time per Part
Aluminum Phone CaseCarbide/Aluminum400 (wet)0.3 (rugueux) 0.1 (finition)5 (rugueux) 0.3 (finition)12 minutes
Stainless Steel GearCarbide/Stainless Steel120 (wet)0.2 (rugueux) 0.08 (finition)2 (rugueux) 0.2 (finition)45 minutes
HSS Drill Bit (HSS/Steel)HSS/Carbon Steel30 (sec)0.15 (forage)10 (single pass)8 minutes

Yigu Technology’s Perspective

Chez Yigu Technologie, we know mastering the elements of CNC machining is key to solving users’ efficiency and quality pain points. Many clients struggle with unbalanced parameters—wasting time on slow speeds or replacing tools too often. Our solutions include a “Parameter Matching Tool” that recommends cutting speed, feed, and depth based on tool/workpiece pairs. We also offer carbide tool bundles optimized for common materials (par ex., aluminum-specific carbide tools) to simplify setup. As CNC tech evolves, we’ll add AI-powered sensors to auto-adjust elements in real time, helping users achieve precision without manual trial-and-error.

FAQ

1. Can I use the same cutting speed for all machining operations (fraisage, forage, tournant)?

No—operations have different requirements. Drilling needs slower speeds than milling (drills have smaller cutting edges that overheat faster). Par exemple: Carbide drill on aluminum = 250 m/mon (contre. 400 m/min for milling with the same tool).

2. What happens if I set the tool feed too low?

A too-low feed rate wastes time (par ex., un 0.05 mm/rev feed on rough machining doubles the time) and can cause “rubbing” (the tool slides over the workpiece instead of cutting), which wears out the tool faster. Aim for the largest feed rate that keeps surface quality or efficiency on track.

3. Do I need to adjust depth of cut for different tool types?

Oui! Fraises en bout (used for milling) can handle larger depths than drills (used for holes). A 10mm end mill on aluminum can take an 8mm depth, but a 10mm drill should only take 2–3mm per pass (drills are less rigid and prone to breaking with large depths).

Indice
Faire défiler vers le haut