Our Electronics CNC Machining Services
À la technologie Yigu, Nous redéfinissons Electronics CNC Machining by blending cutting-edge Ingénierie de précision avec avancé Contrôle numérique de l'ordinateur systèmes. Our solutions deliver high-tolerance, miniaturized components—from circuit board parts to custom enclosures—that power today’s electronics manufacturing. Que vous ayez besoin d'un prototypage rapide ou d'une production à volume élevé, we combine technical expertise with quality assurance to turn your designs into reliable, cost-effective reality.

Définition: What Is Electronics CNC Machining?
Electronics CNC Machining is a specialized subset of machining technology qui utilise Contrôle numérique de l'ordinateur (CNC) systems to automate the production of precision parts for the electronics industry. Unlike traditional manual metalworking, CNC machining relies on pre-programmed software to control tools (such as mills, tours, et routeurs), assurer un cohérent, high-accuracy results—critical for the small, complex components in modern electronics.
Key attributes that set it apart include:
- Miniaturisation: The ability to produce tiny parts (down to 0.001mm tolerances) for devices like wearables and microchips.
- Usinage à haute tolérance: Meeting strict dimensional standards (often ±0.005mm) to ensure components fit and function seamlessly.
- Integration with Electronics Manufacturing: Focus on parts that support electrical performance, such as conductive components or heat-dissipating parts.
En bref, it’s the backbone of producing reliable, high-performance electronics—from consumer gadgets to industrial equipment.
Nos capacités: What Yigu Technology Brings to the Table
À la technologie Yigu, we’ve invested in building a comprehensive Electronics CNC Machining service that addresses every stage of your project. Our capabilities are designed to meet the unique needs of electronics manufacturers, Des startups à la fortune 500 Compagnies.
Capacité | Description | Mesures clés |
Usinage de haute précision | Produce parts with tolerances as tight as ±0.002mm, ideal for micro-electronics. | Précision: ± 0,002 mm; Répétabilité: ± 0,001 mm |
Équipement CNC avancé | Flotte de 50+ machines de pointe (Haas, Fanuc, and DMG Mori) with 5-axis capabilities. | Machine Count: 52; 5-Axis Machines: 18; Uptime: 98% |
Fabrication personnalisée | Adapter les pièces à vos spécifications exactes, from design tweaks to full custom builds. | Custom Project Rate: 95% of orders; Support de conception: 24/7 |
Assurance qualité | OIN 9001:2015 certified process with in-line inspections (Cmm, scanners laser). | Taux de défaut: <0.05%; On-Time Quality Checks: 100% |
Prototypage rapide | Turn designs into physical prototypes in 24–72 hours to accelerate product development. | Prototyping Lead Time: 1–3 jours; Options matérielles: 15+ |
Capacité de production | Scale from low-volume (1–100 unités) à grand volume (10,000+ unités) with consistent quality. | Monthly Capacity: 500,000+ parties; Batch Flexibility: 1–50 000 unités |
Expertise technique | Équipe de 30+ ingénieurs avec 5+ years of experience in electronics-specific machining. | Engineer Experience: Avg. 7 années; Industry Specialization: 100% electronics-focused |
Electronics-Specific Solutions | Design parts for thermal management, conductivité, and space efficiency. | Thermal Part Success Rate: 99%; Conductive Component Compliance: RoHS/REACH |
Parties communes: What We Machinate for Electronics
Electronics CNC Machining produces a wide range of components that are essential to nearly every electronic device. Vous trouverez ci-dessous les parties les plus courantes que nous fabriquons, along with their uses and typical materials.
Common Part | Primary Application | Typical Materials | Exigences clés |
Circuit Board Components | Connecteurs, terminaux, and mounting brackets for PCBs. | Cuivre, Laiton, Alliages en aluminium | Conductivité, petite taille (≤5 mm), faible poids |
Enclosures and Housings | Protection for circuit boards (Par exemple, in smartphones, capteurs). | Plastiques, Aluminium, Acier inoxydable | Résistance à l'impact, Bouclier EMI, ajustement de précision |
Connecteurs | USB ports, HDMI jacks, and board-to-board connectors. | Laiton, Cuivre (plaqué), Plastique | High durability (10,000+ insertions), conductivity |
Dissipateurs de chaleur | Dissipate heat from CPUs, LEDs, and power electronics. | Alliages en aluminium, Cuivre | Haute conductivité thermique, léger |
Semiconductor Equipment Parts | Wafer handling tools, chambres, and precision fixtures. | Acier inoxydable, Titane, Céramique | Ultra-high tolerance (± 0,001 mm), résistance à la corrosion |
Instruments de précision | Components for medical devices (Par exemple, glucose monitors) and test equipment. | Acier inoxydable, Plastiques, Composites | Biocompatibilité, précision, fiabilité |
Micro-Electromechanical Systems (Mems) | Tiny sensors (accéléromètres, gyroscopes) for wearables. | Silicium, Quartz, Aluminium | Miniaturisation (≤1 mm), high sensitivity |
Fixtures and Jigs | Tools to hold parts during electronics assembly. | Aluminium, Acier, Plastiques | Répétabilité, durabilité, Nettoyage facile |
Processus: How We Turn Designs into Finished Parts
Our Electronics CNC Machining process is a structured, quality-driven workflow that ensures consistency and accuracy from start to finish. We follow eight key steps, each supported by our technical expertise and advanced equipment.
Étape 1: Design and Simulation
We begin by reviewing your CAD files (Solide, Autocad, or STEP files) and using simulation software (Mastercam, Fusion 360) to test the machining process virtually. This helps identify potential issues (Par exemple, collisions d'outils, déchets) Avant le début de la production. Résultat: 30% reduction in errors compared to traditional methods.
Étape 2: Sélection des matériaux
Based on your part’s function (Par exemple, conductivité, résistance thermique), we help you choose the best material from our range (alliages en aluminium, cuivre, plastiques, etc.). We source materials from certified suppliers to ensure compliance with industry standards (Rohs, ATTEINDRE).
Étape 3: CNC Programming
Our engineers write optimized CNC code that dictates every tool movement—from cutting depth to feed rate. Pour des pièces complexes, we use 5-axis programming to reduce setup time and improve precision.
Étape 4: Opérations d'usinage
Parts are loaded into our CNC machines, which perform operations like milling (for 3D shapes), tournant (pour les pièces cylindriques), et forage (Pour les trous). Our 5-axis machines handle complex geometries in a single setup, reducing lead times by 25%.
Étape 5: Inspection and Testing
Après l'usinage, parts undergo rigorous testing using:
- Coordonner les machines de mesure (Cmm) for dimensional accuracy.
- Laser scanners for surface quality.
- Electrical tests (for conductive parts) to ensure performance.
Étape 6: Finishing Processes
We add finishes to enhance functionality or appearance, tel que:
- Anodisation (for aluminum enclosures) to improve corrosion resistance.
- Placage (or, argent) for connectors to boost conductivity.
- Polissage (for precision instruments) to reduce friction.
Étape 7: Assembly Integration
For parts that need to work together (Par exemple, enclosures and circuit board brackets), we offer assembly services to ensure a perfect fit. We use automated tools to maintain consistency across batches.
Étape 8: Contrôle de la qualité
Avant l'expédition, every batch undergoes a final quality check. We compare parts to your original design and provide a detailed report (including inspection data) pour la transparence.
Matériels: Choosing the Right Substrate for Electronics Parts
The material you choose for your CNC-machined part directly impacts its performance, coût, et durabilité. Vous trouverez ci-dessous une ventilation des matériaux les plus courants que nous utilisons, avec leurs pros, inconvénients, and ideal applications.
Matériel | Propriétés clés | Pros | Inconvénients | Idéal pour |
Alliages en aluminium (6061, 7075) | Léger (2.7 g / cm³), bonne conductivité thermique (167 Avec mk). | Faible coût, Facile à machine, résistant à la corrosion. | Lower strength than steel. | Chauffer, enclos, mounting brackets. |
Cuivre | Conductivité élevée (401 Avec mk), malléable. | Ideal for electrical parts. | Cher, lourd (8.96 g / cm³). | Connecteurs, circuit board terminals, dissipateurs de chaleur. |
Laiton | Alloy of copper and zinc (60–80% Cu), bonne machinabilité. | Lower cost than copper, résistant à la corrosion. | Lower conductivity than pure copper. | Connecteurs, luminaires, decorative parts. |
Acier inoxydable (304, 316) | Forte résistance (515 MPA), résistant à la corrosion. | Durable, suitable for harsh environments. | Lourd (7.93 g / cm³), harder to machine. | Pièces d'équipement à semi-conducteurs, dispositifs médicaux. |
Plastiques (Abs, Jeter un coup d'œil) | Léger (1.05–1.3 g/cm³), insulating. | Faible coût, good for non-conductive parts. | Less durable than metals. | Enclos, isolateurs, low-weight components. |
Matériaux composites (Fibre de carbone) | Ratio de force / poids élevé, rigid. | Léger, strong. | Cher, difficult to machine. | Pièces haute performance (aerospace electronics, drones). |
Matériaux conducteurs (Cuivre, Silver-Plated Brass) | High electrical conductivity. | Ensure reliable signal transfer. | Can be costly. | Connecteurs, antennes, PCB components. |
Insulating Materials (Ptfe, Céramique) | Low electrical conductivity. | Prevent short circuits. | Fragile (céramique), coût élevé (Ptfe). | Isolateurs, high-temperature parts. |
Avantages: Why Electronics Manufacturers Choose CNC Machining
Electronics CNC Machining offers clear benefits over traditional manufacturing methods—especially for the high-precision, low-margin world of electronics. Below are the top advantages, backed by data from our projects.
1. Precision and Accuracy
CNC machines eliminate human error, producing parts with tolerances as tight as ±0.002mm. This is critical for electronics, where even a tiny misfit can cause a device to fail. Données: Our clients report a 40% reduction in assembly issues after switching to our CNC-machined parts.
2. Consistency and Reproducibility
Every part from a CNC machine is identical—even across thousands of units. This is essential for mass-produced electronics (Par exemple, smartphones), where consistency ensures scalability. Données: Our batch-to-batch consistency rate is 99.9%, far higher than the industry average of 95%.
3. Rentabilité
Alors que les machines CNC ont des coûts initiaux plus élevés, they reduce long-term expenses by minimizing waste and labor. Pour les commandes à volume élevé, the cost per part drops significantly. Données: Clients save 15–25% on production costs compared to manual machining for orders over 1,000 unités.
4. Time Efficiency
Les machines CNC fonctionnent 24/7 avec une supervision minimale, cutting lead times by up to 50%. Prototypage rapide (24–72 heures) also speeds up product development cycles. Données: Our average lead time for production parts is 5–7 days, contre. 10–14 days for traditional methods.
5. Personnalisation
CNC software makes it easy to adjust designs—even for small batches. This is perfect for startups or companies testing new products. Données: 95% of our clients request custom modifications, and we fulfill 90% of them without increasing lead times.
6. Enhanced Durability
CNC machining produces parts with smooth surfaces and consistent material density, improving their lifespan. Par exemple, our anodized aluminum enclosures last 3x longer than injection-molded plastic alternatives.
7. Déchets réduits
CNC software optimizes material usage, cutting waste by 30–40% compared to manual machining. Ce n'est pas seulement rentable mais aussi meilleur pour l'environnement.
8. High-Tolerance Machining
For micro-electronics (Par exemple, MEMS sensors), CNC machining is the only way to achieve the ultra-tight tolerances needed. Our machines regularly hit ±0.001mm—critical for medical and aerospace electronics.
Études de cas: Succès du monde réel avec la technologie Yigu
Our Electronics CNC Machining solutions have helped clients across industries solve complex challenges, réduire les coûts, and accelerate growth. Below are three standout case studies.
Étude de cas 1: Medical Device Heat Sink
Client: A leading manufacturer of portable ultrasound machines.
Défi: Their existing heat sink was too heavy (ajout 20% to the device weight) and failed to dissipate heat efficiently, causing shutdowns.
Solution: We machined a custom heat sink from 6061 alliage en aluminium, using 5-axis CNC to create complex fins that increased surface area by 40%.
Résultats:
- Weight reduced by 35% (from 250g to 162g).
- Heat dissipation improved by 50%—no more shutdowns.
- Production cost cut by 18% (due to optimized material usage).
Témoignage: “Yigu’s heat sink transformed our device—we’ve seen a 25% increase in sales thanks to the lighter, more reliable design.” — Sarah Chen, R.&D Director.
Étude de cas 2: Connecteur d'électronique grand public
Client: A startup developing a new wireless charging dock.
Défi: They needed a custom connector that could handle 10,000+ insertions (norme de l'industrie: 5,000) and fit in a tiny space (10mm x 5mm).
Solution: We used brass (plated with gold) and precision CNC turning to create a compact, durable connector. We also added a self-cleaning feature to prevent dust buildup.
Résultats:
- Connector lifespan exceeded 15,000 insertions (3x the client’s goal).
- Fit perfectly in the 10mm x 5mm space—no design changes needed.
- Prototyping done in 48 heures; production launched in 2 semaines.
Témoignage: “Yigu turned our impossible design into reality—their speed and precision were game-changing for our startup.” — Mike Lee, CEO.
Étude de cas 3: Industrial Sensor Enclosure
Client: A manufacturer of industrial temperature sensors for factories.
Défi: Their enclosures failed in harsh environments (humidité élevée, produits chimiques), conduisant à un 15% return rate.
Solution: We machined enclosures from 316 acier inoxydable (résistant à la corrosion) and added a rubber gasket for waterproofing. We also optimized the design for easy assembly.
Résultats:
- Return rate dropped from 15% to 0.5%.
- Enclosures passed IP68 waterproof testing (submersion in 1m of water for 30 minutes).
- Assembly time reduced by 40% (saving the client $50,000/year).
Témoignage: “Yigu’s enclosures are bulletproof—our clients now trust our sensors to work in any environment.” — David Wang, Operations Manager.
Pourquoi nous choisir: Yigu Technology vs. Concurrents
When it comes to Electronics CNC Machining, not all providers are created equal. Below is how Yigu Technology stands out from the competition—focused on the needs of electronics manufacturers.
Facteur | Technologie Yigu | Moyenne de l'industrie | Our Advantage |
Expertise et expérience | 10+ years in electronics-specific CNC machining; 30+ engineers with avg. 7 years of experience. | 3–5 years of general machining experience; engineers with avg. 3 years of experience. | Deep understanding of electronics challenges (Par exemple, miniaturization, conductivité). |
Qualité et fiabilité | OIN 9001:2015 agréé; taux de défaut <0.05%; 100% on-time quality checks. | Defect rate 0.5–1%; 85% on-time quality checks. | Fewer errors mean less downtime and lower costs for you. |
Service client | 24/7 design support; dedicated account manager for every client; 2-hour response time. | 9–5 support; shared account managers; 24-hour response time. | Rapide, personalized support to keep your projects on track. |
Innovation et technologie | 52 advanced CNC machines (18 5-axe); in-house simulation and testing tools. | 20–30 machines (5–10 5-axis); outsourced testing. | Ability to handle complex designs and deliver faster results. |
Solutions rentables | 15–25% cost savings for high-volume orders; no hidden fees. | Higher costs for custom parts; hidden setup fees. | Transparent pricing that fits your budget. |
Temps de revirement rapide | Prototypage: 1–3 jours; production: 5–7 jours. | Prototypage: 5–7 jours; production: 10–14 days. | Get your products to market faster. |