Our CNC Mill-Turning Services

Transform your complex part production with our CNC Mill-Turning services—the ultimate multi-tasking machining solution that combines milling and turning in one setup. Using advanced mill-turning centers, we craft high-precision components (tolerances down to ±0.001mm) from metals, composites, and exotic materials—eliminating repositioning errors, cutting lead times, and delivering consistent results for aerospace, médical, et industries automobiles. Whether you need cylindrical parts with intricate milled features or custom components requiring both turning and milling, our single-setup approach boosts efficiency without compromising quality.​

cnc mill turning
cnc mill turning

What Is CNC Mill-Turning?

CNC Mill tournant—also called multi-tasking machining—is an advanced manufacturing technologie that integrates both turning and milling operations into a single mill-turning center. Contrairement à l'usinage traditionnel (which requires separate lathes for turning and mills for milling, plus manual part repositioning), it lets you complete complex parts in one setup—reducing errors, gagner du temps, et améliorer la cohérence.

Le Aperçu du processus revolves around a hybrid machine: UN mill-turning center combines a rotating spindle (for turning cylindrical features) with multi-axis tool turrets (for milling flat surfaces, forage des trous, or adding slots). The part is held in a chuck or collet, rotated by the spindle (tournant), while tools move along linear (X, Oui, Z) and rotational (UN, C) axes to add milled features—all under CNC control.​

To explain “Comment ça marche” simply: Imagine a machine that can first turn a metal bar into a shaft (cylindrical turning), then immediately mill a slot on its side, drill cross-holes, and add threads—all without moving the part to another machine. Par exemple, a medical bone screw (which needs a turned cylindrical body, milled flat drive, and threaded end) can be fully machined in one run. This seamless combination of turning and milling is what makes CNC Mill tournant ideal for parts with both rotational and prismatic features.

Our CNC Mill-Turning Capabilities

Nous proposons une gamme complète mill-turning capabilities tailored to complex part requirements, avec un accent sur niveaux de précision, réalisations en matière de tolérance, and multi-tasking flexibility. Vous trouverez ci-dessous une répartition détaillée de nos principales capacités:​

CapacitéSpécification
Machine Configuration– Broche: 2-axis turning (C-axis for rotation, Z-axis for linear movement)- Tool Turret: 5-axis milling (X, Oui, Z + A/B-axis for angular positioning)- Outils en direct: Forets, tapissements, moulin à bout (for in-line milling/drilling)​
Niveaux de précision– Tournant: ± 0,001 mm (diamètre), ± 0,002 mm (longueur)- Fraisage: ±0.0015mm (positioning), ± 0,001 mm (répétabilité)- Rugosité de surface (Rampe): 0.02μm–0.8μm​
Réalisations en matière de tolérance– Standard: ± 0,003 mm (métaux), ± 0,005 mm (non-métaux)- Critical Parts: ± 0,001 mm (Par exemple, capteurs aérospatiaux, implants médicaux)- Rencontre ISO 2768-1 (qualité extra fine) et ASME Y14.5​
Taille de pièce maximale– Diamètre: 0.5mm–150mm (parties cylindriques)- Longueur: Up to 800mm (length-to-diameter ratio up to 15:1)- Poids: Up to 300kg​
Épaisseur de matériau– Métaux: 0.5mm–100mm (acier inoxydable), 0.5mm–120mm (aluminium), 0.5mm–80mm (titane)- Non-métaux: 1mm–80mm (plastiques), 1mm–60mm (composites), 1mm–50mm (acrylique)- Matériaux spéciaux: 0.5mm–50mm (exotic metals like inconel), 1mm–60mm (polymères haute performance)​
Usinage personnalisé– Caractéristiques: Turned diameters, milled slots/pockets, cross-holes (0.3diamètre mm), fils de discussion (0.2Pitch MM), sous-dépouille- Compatibilité: Fichiers CAO/FAO (Dxf, Dwg, ÉTAPE, STL, Igies)- Volume: Prototypes (1–50 unités) à grand volume (200,000+ unités / mois)​
Options d'outillage– Outils de virage: Inserts en carbure (pour les métaux), outils diamantés (pour les plastiques)- Outils de fraisage: Moulin à bout (0.1mm–20mm diameter), forets, tapissements, alésus- Tool Changers: Automatisé (jusqu'à 48 outils) pour les tirages à grand volume
Usinage à grande vitesse– Vitesse de broche: Jusqu'à 12,000 RPM (tournant), 20,000 RPM (fraisage)- Taux d'alimentation: Up to 1,000mm/min (linéaire), 500°/min (rotational)​
Assurance qualitéIn-line Inspection: Micromètres laser, touch probes (for real-time dimension checks)- Après l'achat: CMMS (Coordonner les machines de mesure), comparateurs optiques- Conformité: OIN 9001, AS9100 (aérospatial), OIN 13485 (médical)​

Si vous avez besoin 100 titanium aerospace shafts (with milled keyways) ou 50,000 brass electronics connectors (with turned bodies and milled slots), our mill-turning capabilities scale to match your project’s complexity.

The CNC Mill-Turning Process (Étape par étape)

Notre processus étape par étape is optimized to leverage the multi-tasking power of mill-turning centers, ensuring efficiency and precision from design to finish:​

  1. Conception et modélisation CAO: Nous commençons par examiner votre modèle CAO (or creating one from sketches) to identify all features—turned diameters, milled slots, trous, etc.. Our engineers optimize the design for mill-turning—e.g., ensuring milled features are accessible without spindle interference and turning diameters are compatible with chuck size. Pour des pièces complexes, we use 3D simulation to test tool paths.​
  1. Programmation de came: Le modèle CAO est importé dans le logiciel CAM (Mastercam Mill-Turn, Gibbscam) to generate integrated chemins d'outils for both turning and milling. We sequence operations logically: first turning (to create the cylindrical base), then milling/drilling (to add prismatic features), and finally finishing (polishing/threading). We also program C-axis rotation (for angular milling) and live tooling activation.​
  1. Configuration et calibrage: The raw material (bar stock or blank) is loaded into the machine’s chuck/collet. We calibrate the spindle (for turning speed) and tool turret (for milling accuracy) using laser measuring tools. Cutting tools are loaded into the turret, et systèmes de refroidissement are activated—directed to both turning and milling zones. A test part is run to verify tolerances and tool alignment.​
  1. Turning Execution: The spindle rotates the part, and turning tools move along the Z (longueur) and X (diamètre) axes to shape cylindrical features—OD (diamètre extérieur), IDENTIFIANT (inner diameter), rétroviser, ou chamfreurs. For long parts, a tailstock provides additional support to prevent deflection.​
  1. Milling Execution: After turning, the spindle stops rotating (or indexes to a fixed angle via C-axis), and the tool turret moves along X/Y/Z (and A/B if needed) to mill flat surfaces, machines à sous, poches, or drill holes. Live tooling (rotating tools in the turret) enables drilling and tapping without repositioning.​

Inspection après usinage: Les pièces sont soumises à des contrôles rigoureux contrôle de qualité—we measure turning dimensions (diameter/length) with micrometers, milling features (slot depth/hole position) avec CMMS, and check surface finish with profilometers. Parts requiring finishing move to débarquant ou polissage.

Matériaux avec lesquels nous travaillons

CNC Mill tournant excels with a wide range of materials, though tool selection and parameters vary based on material hardness and machinability. Vous trouverez ci-dessous une ventilation de nos matériaux pris en charge, propriétés clés, et utilisations idéales:​

Catégorie de matérielExemplesPropriétés clésMachinability Notes​Applications idéales
MétauxAcier inoxydableRésistant à la corrosion, fort, moderate machinability​Use carbide turning inserts; high-pressure coolant for milling​Attaches aérospatiales, outils médicaux
AluminiumLéger, doux, excellent machinability​High spindle speeds (10,000–15,000 RPM); usure minimale des outilsPièces automobiles, enclos électronique
TitaneHaute force à poids, dur, low machinability​Vitesses lents (2,000–4 000 tr / min); sharp carbide tools​Implants orthopédiques, lames de turbine
LaitonMalléable, conducteur, excellent machinability​Fast turning speeds; smooth finishes without coolant​Connecteurs électriques, pièces décoratives
CuivreHautement conducteur, doux, moderate machinability​Utilisez du liquide de refroidissement pour éviter de fondre; sharp tools for milling​Échangeurs de chaleur, wiring terminals​
Non-métauxPlastiques (ABS/Polycarbonate)Léger, durable, low melting point​Low speeds (3,000–5,000 RPM); mist coolant to prevent warping​Boîtiers pour biens de consommation, prototypes
CompositesForte résistance, léger, abrasive​Utiliser des outils diamantés; low feed rates for milling​Racing car parts, aerospace panels​
BoisNaturel, doux, prone to splintering​Sharp HSS tools; low pressure to avoid splitting​Luminaires personnalisés, composants décoratifs
AcryliqueTransparent, rigide, brittle​Slow feed rates; sharp tools to prevent cracking​Vitrines, composants optiques
Matériaux spéciauxMétaux exotiques (Décevoir)Résistant à la chaleur, dur, low machinability​Outils en céramique; high-temperature coolant​Pièces de moteur aérospatiales, chemical equipment​
Polymères haute performance (Jeter un coup d'œil)Résistant à la chaleur, résistant aux produits chimiquesHigh-speed steel tools; air cooling​Enveloppes de dispositifs médicaux, sceaux industriels

We test all materials to optimize spindle speeds, taux d'alimentation, and tool selection—ensuring consistent precision across every part.

Traitement de surface & Options de finition

After mill-turning, Nous offrons une gamme de traitement de surface et options de finition pour améliorer la durabilité des pièces, fonctionnalité, et esthétique. Nos services les plus populaires incluent:​

Possibilité de finition​Description du processusAvantages clésCompatibilité des matériauxCoût (par pièce, moy.)​Mieux pour
AffûtageUses abrasive wheels to smooth turned/milled surfaces​Tightens tolerances (± 0,001 mm); removes tool marks​Métaux, ceramics​​10–40​Arbres moteur, bearing surfaces​
PolissageUses buffing wheels + compounds to create glossy finishes​Améliore l'esthétique; réduit la frictionAcier inoxydable, laiton, aluminium​8–35​Outils médicaux, biens de consommation
PeintureApplies corrosion-resistant paint (mat/brillant) via spray or dip​Protects against rust; custom colors​Métaux, plastiques​5–25​Pièces automobiles/industrielles extérieures
RevêtementRevêtement en poudre (épais, résistant aux rayures) or PVD coating (mince, à l'usure)​Durabilité; heat/corrosion resistance​Métaux, composites​15–50​Heavy-duty machinery parts​
AnodisationAdds protective oxide layer to aluminum (dyed or clear)​Résistance à la corrosion; finition décorativeAluminium10-30Enclos électronique, pièces aérospatiales
Traitement thermiqueHeats/cools metals to strengthen (durcissement) or reduce brittleness (tremper)​Améliore la résistance à la fatigue; increases hardness​Acier, titane, inconel​​20–60​Outillage, high-stress components​
DébarquantSupprime les arêtes vives (via tumbling, brossage, or manual tools)​Improves safety; prevents assembly issues​All materials​3–15Dispositifs médicaux, electronics pins​
ÉlectroplasteCoats parts with metal (or, argent, nickel) via electrolysis​Enhances conductivity; résistance à la corrosionLaiton, cuivre, acier​10–45​Connecteurs électriques, bijoux

Par exemple, we use anodizing for aluminum automotive trim (Pour résister aux rayures) and electroplating for brass electronics connectors (to improve conductivity).

Tolérances & Assurance qualité

Tolérances for CNC Mill-Turning focus on both turning (diameter/length) et moulin (feature position/size) precision—critical for parts where fitment depends on multiple features. Notre processus de contrôle de qualité ensure strict adherence to standards:​

MatérielTurning Tolerance (Diamètre)​Milling Tolerance (Position)​Rugosité de surface (Rampe)​Norme de précision utilisée​Technique de mesure
Acier inoxydable±0.001–0.003mm​±0.0015–0.003mm​0.02–0.2μm​OIN 2768-1 (extra-fin), ASME Y14.5Cmm + Laser Micrometer​
Aluminium±0.002–0.005mm​±0.002–0.005mm​0.05–0.4μm​OIN 2768-1 (bien), AMS 2750​Cmm + Pieds à coulisse numériques
Titane±0.0015–0.004mm​±0.002–0.004mm​0.03–0.3μm​OIN 2768-1 (extra-fin), AMS 4928​Cmm + Comparateur optique
Plastique ABS​±0.005–0.01mm​±0.005–0.01mm​0.2–0.8μm​OIN 2768-1 (moyen), ASTM D638​Cmm + Micromètre
Décevoir (Exotic)​±0.002–0.004mm​±0.002–0.004mm​0.1–0.4μm​OIN 2768-1 (extra-fin), AS9100Cmm + Fluorescence aux rayons X​

Notre processus de contrôle de qualité inclure:​

  • Pré-masseur: Inspecter les matières premières pour détecter les défauts (Par exemple, fissures dans le titane, unevenness in composites) and verifying dimensions.​
  • En cours: Real-time monitoring of spindle speed, taux d'alimentation, and tool wear via CNC software; touch probe checks (for critical features like hole position).​

Après l'achat: 100% inspection pour les pièces critiques (médical/aérospatial); statistical sampling (5–10%) Pour les commandes à volume élevé. Nous documentons également chaque étape (paramètres d'usinage, Résultats de l'inspection) pour la conformité.

Key Advantages of CNC Mill-Turning

Compared to traditional separate turning/milling or single-process machining, CNC Mill tournant offers transformative benefits:​

  1. Usinage de configuration unique: Completes all operations (tournant, fraisage, forage, filetage) in one setup—eliminating part repositioning errors (common in traditional machining) and reducing tolerance stack-up.​
  1. Haute précision: Atteint des tolérances aussi strictes que ±0,001 mm, ce qui est essentiel pour les pièces telles que les implants médicaux (où l'ajustement a un impact direct sur la sécurité des patients) ou capteurs aérospatiaux (where precision affects performance).​
  1. Cohérence et répétabilité: CNC programming ensures every part is identical—even for high-volume orders (Par exemple, 200,000 brass connectors). No variation from manual repositioning.​
  1. Géométries complexes: Handles parts with both rotational (tourné) and prismatic (moulu) features—e.g., a shaft with milled slots, a screw with a hex drive, or a valve with cross-holes.​
  2. Temps de configuration réduit: One setup instead of 2–3 (usinage traditionnel) cuts setup time by 60–80%—speeding up production for prototypes and high-volume runs.
  1. Increased Efficiency: Usinage à grande vitesse (jusqu'à 20,000 RPM for milling) and automated tool changers reduce per-part cycle time by 30–50% compared to traditional methods. Par exemple, a brass connector that takes 5 minutes to make with separate turning/milling takes just 2 minutes with CNC mill-turning.​
  1. Versatilité: Handles almost all materials (métaux, non-métaux, exotics) and part types—from tiny medical screws (0.5diamètre mm) to large aerospace shafts (150diamètre mm). It also supports low-volume prototypes and high-volume production (200,000+ unités / mois).​
  1. Rentabilité: While mill-turning centers have higher upfront costs, reduced labor (one operator runs 2–3 machines), fewer setups, and lower scrap rates (due to fewer errors) cut long-term costs by 25–40%.​
  1. Tolérances étroites: The single-setup approach eliminates tolerance stack-up (errors from repositioning), enabling tighter tolerances (± 0,001 mm) than traditional machining (which often struggles with ±0.005mm for multi-feature parts).​
  1. High-Quality Surface Finish: Integrated finishing operations (Par exemple, polissage, filetage) in one setup reduce tool marks and improve surface roughness (Ra down to 0.02μm)—eliminating the need for secondary finishing in many cases.

Applications de l'industrie

CNC Mill tournant is indispensable across industries that require complex, high-precision parts with both rotational and prismatic features. Voici ses applications les plus courantes:​

IndustrieUtilisations courantesKey Benefit of CNC Mill-Turning​
AérospatialTurbine shafts (titane), buses d'injecteur de carburant (acier inoxydable), boîtiers de capteurs (aluminium)​Single-setup precision for safety-critical parts​
AutomobileEngins de transmission (acier), composants de suspension (aluminium), fuel system valves (laiton)​High-volume consistency + fast cycle times​
Dispositifs médicauxOrthopedic screws (titane), surgical tool shafts (acier inoxydable), catheter connectors (Jeter un coup d'œil)​Tolérances étroites + biocompatible material compatibility​
Fabrication industrielleTielles de cylindre hydraulique (acier), arbres de pompe (laiton), conveyor system components (aluminium)​Durable parts with complex features​
ÉlectroniqueÉpingles de connecteur (laiton), heat sink shafts (aluminium), micro-switch components (plastique)​Petit, precise parts with mixed turning/milling features​
DéfenseWeapon sight components (aluminium), vehicle armor fasteners (acier), communication device shafts (titane)​Reliability in harsh environments + tolérances étroites
Fabrication d'outils et de matricesMold cores (acier), stamping die shafts (carbure), custom cutting tool holders (acier)​Géométries complexes + longue durée de vie de l'outil
PrototypagePrototypes rapides de nouveaux produits (plastiques/aluminium)​Retarage rapide pour la validation de la conception
Biens de consommationWatch components (brass/steel), eyeglass hinge pins (titane), cosmetic packaging parts (plastique)​Esthétique + ajustement de précision
ÉnergieWind turbine gear shafts (acier), solar panel mounting bolts (aluminium), battery connector pins (cuivre)​Durability for outdoor/heavy use​

Par exemple, in the energy industry, our CNC-mill-turned wind turbine gear shafts (acier, ±0.002mm tolerance) reduce friction and extend turbine life by 20% compared to traditionally machined shafts. In medical devices, our titanium orthopedic screws (with milled drive slots and turned threads) ensure a perfect fit for patients—reducing surgical complications.

Advanced Manufacturing Techniques in CNC Mill-Turning

To maximize the performance of CNC mill-turning, we leverage specialized techniques d'usinage and optimized processes tailored to complex parts:​

9.1 Core Mill-Turning Techniques​

  • Live Tooling Machining:​

The cornerstone of CNC mill-turning—outils en direct (rotating tools in the turret) enables milling, forage, and tapping while the part is held in the chuck. Par exemple, after turning a shaft’s outer diameter, we use a live drill to add cross-holes and a live tap to create threads—all without repositioning. Nous utilisons:​

  • Radial Live Tools: For features perpendicular to the part’s axis (Par exemple, cross-holes, machines à sous).​
  • Axial Live Tools: For features parallel to the part’s axis (Par exemple, end-face holes, fils de discussion).​
  • C-Axis Indexing/Rotation:​

The C-axis (rotational axis of the spindle) lets us position the part at precise angles (indexing) or rotate it continuously (for circular milling). Par exemple:​

  • Indexing: Rotating the part 90° to mill a slot on its side, then 180° for another slot—ensuring perfect symmetry.​
  • Continuous Rotation: Rotating the part while milling to create helical features (Par exemple, spiral grooves on a turbine shaft).​
  • Y-Axis Machining:​

The Y-axis (linear axis perpendicular to both X and Z) enables off-center milling—critical for parts with features not aligned to the spindle axis (Par exemple, an eccentric slot on a camshaft). It eliminates the need for specialized fixtures to offset the part.​

  • Alimentation par barre & Unattended Operation:​

Pour une production à volume élevé (Par exemple, 200,000 brass connectors), Nous utilisons automatic bar feeders (3–6 meter capacity) to load raw material into the machine. This enables unattended operation for 8–12 hours, reducing labor costs and increasing efficiency.​

9.2 Supporting Technologies​

  • Optimisation du chemin d'outil:​

CAM software generates integrated chemins d'outils that minimize tool travel and prioritize operations by material removal:​

  1. Rough turning (removes most material quickly).​
  1. Rough milling (shapes prismatic features).​
  1. Finish turning (refines cylindrical surfaces).​
  1. Finish milling (polishes slots/holes).​
  1. Opérations secondaires (filetage, débarquant).​

For hard materials like titanium, Nous utilisons trochoidal milling (circular tool paths) to reduce cutting force and extend tool life.​

  • Sélection d'outils de coupe:​

We match tools to material and operation:​

  • Outils de virage: Inserts en carbure (TiAlN-coated for heat resistance) pour les métaux; diamond tools for plastics.​
  • Outils de fraisage: Solid carbide end mills (pour précision) pour les métaux; acier à grande vitesse (HSS) moulin à bout (rentable) for plastics.​
  • Drills/Taps: Cobalt drills for hard metals (titane, inconel); HSS taps for soft metals (laiton, aluminium).​
  • Systèmes de liquide de refroidissement:​

Directed coolant ensures optimal performance:​

  • Flood Coolant: For metal machining—high-pressure (50–80 bar) coolant directed to the cutting zone reduces heat and flushes chips.​
  • Mist Coolant: For plastics/exotics—atomized coolant prevents melting/warping without residue buildup.​
  • Through-Spindle Coolant: For deep-hole drilling—coolant flows through the drill’s center to reach the cutting tip, improving chip evacuation.​
  • Conception de luminaire:​

Custom fixtures enhance stability and precision:​

  • Collets: Pour les pièces de petit diamètre (≤ 20 mm) to ensure concentricity (± 0,001 mm).​
  • Chucks: For large-diameter parts (20–150mm)—3-jaw chucks for round parts, 4-jaw chucks for irregular shapes.​

Tailstocks: For long parts (≥300mm) to prevent deflection during turning/milling.

Études de cas: CNC Mill-Turning Success Stories

Notre CNC Mill-Turning services have solved complex part challenges for clients across aerospace and medical industries. Vous trouverez ci-dessous deux Projets réussis showcasing our expertise:​

Étude de cas 1: Aerospace Turbine Shaft Manufacturer (Titanium Shafts)​

  • Défi: Le client avait besoin 500 titanium turbine shafts (80diamètre mm, 600longueur mm) for jet engines—each requiring a turned outer diameter, 4 milled keyways (120° apart), 6 cross-holes (0.8diamètre mm), and a threaded end. Tolerances were ±0.002mm (critical for engine balance), and the client’s previous supplier used separate turning/milling (3 setups), caution 10% of shafts to fail due to misaligned keyways. Lead time was 5 semaines, delaying engine production.​
  • Solution: Nous avons utilisé un 5 axe mill-turning center with live tooling and C-axis rotation. We machined each shaft in one setup: first turning the outer diameter and threading the end, then using C-axis indexing to mill the 4 keyways (120° apart) and radial live tools to drill the cross-holes. We used carbide turning inserts (Enduit de tialn) et liquide de refroidissement à haute pression (80 bar) to handle titanium’s low machinability. Our in-line touch probe checked keyway alignment mid-production, rejecting out-of-tolerance parts immediately.​
  • Résultats:​
  • Misalignment rate dropped from 10% to 0.5%—only 3 shafts failed per batch (contre. 50 previously).​
  • Lead time shortened from 5 des semaines pour 2 weeks—helping the client meet their engine launch deadline.​
  • Production cost per shaft decreased by 35% (reduced labor from 3 setups to 1).​
  • Témoignage client: “The single-setup mill-turning eliminated our biggest pain—misaligned keyways. The shafts balance perfectly, and the fast delivery saved our production line. We’ve made them our exclusive supplier for turbine shafts.” — Raj P., Aerospace Engineering Director.​
  • Before and After: Traditionally machined shafts had uneven keyway spacing; mill-turned shafts featured perfectly aligned keyways and cross-holes that met engine balance requirements.​

Étude de cas 2: Medical Device Company (Titanium Orthopedic Screws)​

  • Défi: Le client avait besoin 10,000 titanium orthopedic screws monthly (5diamètre mm, 30longueur mm)—each with a turned cylindrical body, milled hex drive (pour les outils chirurgicaux), and threaded end. Tolerances were ±0.001mm (to ensure compatibility with bone plates), and the screws required a smooth surface finish (Ra ≤ 0.1μm) Pour réduire l'irritation des tissus. The client’s previous supplier used separate turning/milling, conduisant à 8% of screws having mismatched hex drives and threads.​
  • Solution: We used a compact mill-turning center with live tooling and C-axis indexing. We loaded titanium bar stock into an automatic bar feeder (for unattended operation) and programmed the machine to: 1) turn the screw’s body and threads; 2) index the C-axis to 60° increments to mill the hex drive; 3) polish the surface with a fine-grit live tool. We used diamond-coated milling tools for the hex drive (to ensure sharp edges) and mist coolant to prevent titanium oxidation. Après l'achat, we inspected 100% of screws with a CMM and profilometer.​
  • Résultats:​
  • Le taux de défaut a chuté de 8% to 0.2%—only 20 screws failed per month (contre. 800 previously).​
  • Surgeons reported a 40% reduction in screw insertion time (due to precise hex drive/thread alignment).​
  • The client’s patient satisfaction score increased by 25% (thanks to the smooth surface finish).​
  • Challenge Overcome: Separate turning/milling caused hex drives to be off-center relative to threads; CNC mill-turning’s single setup ensured perfect alignment.​

Témoignage client: “These screws fit better than any we’ve used—no more struggling with misaligned hex drives. The smooth finish also means less post-surgery irritation for patients. We’ve doubled our order.” — Dr. Lisa M., Orthopedic Surgeon.

Why Choose Our CNC Mill-Turning Services?

With numerous CNC mill-turning providers, here’s what sets us apart as a trusted partner for complex part production:​

  • Expertise in CNC Mill-Turning: Notre équipe a 22+ years of specialized experience—we master advanced techniques like live tooling, C-axis rotation, and Y-axis machining. Nos ingénieurs sont certifiés en AS9100 (aérospatial) et ISO 13485 (médical) and can solve complex challenges (Par exemple, ±0.001mm tolerances in titanium, multi-feature small parts) that other providers struggle with.​
  • Experience in Various Industries: Nous avons servi 750+ clients à travers 10 industries—from aerospace giants to medical startups. This cross-industry experience means we understand sector-specific requirements: FAA compliance for turbine shafts, FDA regulations for orthopedic screws, and ISO/TS 16949 for automotive parts.​
  • High-Quality Equipment: Nous investissons dans la pointe de la technologie mill-turning centers—15 systems (5-axis and 3-axis) with live tooling, automatic bar feeders, and in-line inspection (laser micrometers, touch probes). All machines are calibrated weekly (using laser interferometers) to maintain ±0.001mm precision.​
  • Excellent service client: Notre équipe est disponible 24/7 to support your project—from design consultation (optimizing parts for mill-turning) au suivi post-livraison. We offer free CAD reviews (identifying features that can be consolidated into one setup) and free samples (so you can verify quality before placing large orders). Pour des projets urgents (Par exemple, medical supply shortages), we assign a dedicated project manager.​
  • Temps de revirement rapide: Our optimized processes deliver industry-leading lead times:​
  • Prototypes (1–50 unités): 1–3 jours
  • Low-volume orders (50–1 000 unités): 3–7 jours
  • High-volume orders (1,000+ unités): 7–14 jours

Pour les ordres de pointe (Par exemple, aerospace emergency replacements), we can deliver parts in 48 heures (pour les petits lots) by running machines 24/7.​

  • Solutions rentables: We help you save money through:​
  • Single-setup machining: Eliminates 2–3 setups, reducing labor costs by 40–50%.​
  • Unattended operation: Automatic bar feeders let us run machines overnight, lowering per-part labor costs.​
  • Volume discounts: 10% off orders over 10,000 units and 15% off orders over 50,000 units—ideal for automotive/electronics high-volume parts.​

Commitment to Quality: Nous sommes ISO 9001, AS9100, et ISO 13485 certified—our processus de contrôle de qualité assurer 99.9% of parts meet your specifications. We also offer full traceability (each part is labeled with a unique ID linked to machining logs and inspection data) pour la conformité.

FAQ

Faites défiler en haut