Processus d'usinage de pliage CNC: Un guide étape par étape pour le travail de tôlerie de précision

découpe laser cnc

Dans la fabrication de tôles, atteindre une cohérence, des pliages précis sont essentiels, mais le pliage manuel traditionnel est souvent confronté à des erreurs humaines, angles incohérents, et un débit lent. Le processus d'usinage par pliage CNC résout ces problèmes en combinant précision contrôlée par ordinateur et fonctionnement automatisé., ce qui le rend idéal pour les pièces produites en série (comme les supports automobiles) et composants personnalisés (tels que les boîtiers électriques). […]

Dans la fabrication de tôles, atteindre une cohérence, des pliages précis sont essentiels, mais le pliage manuel traditionnel est souvent confronté à des erreurs humaines, angles incohérents, et un débit lent. Le CNC bending machining process solves these pain points by combining computer-controlled precision with automated operation, ce qui le rend idéal pour les pièces produites en série (comme les supports automobiles) et composants personnalisés (tels que les boîtiers électriques). Whether you’re a production manager aiming to reduce scrap rates or a technician learning to optimize setup, this guide breaks down the CNC bending process, défis communs, and solutions to ensure high-quality results.

1. What Is the CNC Bending Machining Process? Core Definition & Avantages clés

Before diving into steps, let’s clarify what makes CNC bending different from traditional methods:

Key Definition

Le CNC bending machining process is a computer-controlled manufacturing technique that uses a press brake to bend sheet metal (par ex., acier, aluminium) into predefined shapes. It relies on 3D CAD designs and CAM-generated programs to automate critical parameters—including bending sequence, angle, pression, and tool positioning—eliminating manual guesswork.

Why Choose CNC Bending Over Manual Bending?

A side-by-side comparison highlights the efficiency and precision benefits:

AspectProcessus d'usinage de pliage CNCTraditional Manual Bending
Précision±0.1° angle accuracy; consistent across 1000+ parties±1° angle variation; dépend de la compétence de l'opérateur
Production Speed10–15 bends per minute (pour petites pièces)2–3 bends per minute; slows with complex designs
Taux de rebut2–5% (due to automated checks)10–15% (due to human error)
Gestion de la complexitéEasily handles 5+ bend sequences (par ex., box-shaped parts)Struggles with 3+ virages; risk of misalignment

2. Step-by-Step Breakdown of the CNC Bending Machining Process

The CNC bending process follows a linear, repeatable workflow—from design to inspection. Each step builds on the previous one to ensure accuracy:

Étape 1: Conception & Programmation

This foundational step sets the stage for error-free bending:

  1. Conception CAO: Use software (par ex., SolidWorks, AutoCAD) to create 2D/3D drawings of the bent part. Critical details include:
  • Final bend angles (par ex., 90°, 45°)
  • Material thickness (par ex., 2mm aluminum)
  • Bend radius (to avoid material cracking)
  1. Programmation FAO: Import the CAD file into CAM software (par ex., Mastercam, FAO SolidWorks) to generate the press brake program. The software calculates:
  • Bending sequence (order of bends to avoid tool collisions—e.g., bend the innermost angles first)
  • Press force (par ex., 50 kN for 2mm steel)
  • Tool selection (matching upper/lower dies to the part’s shape)

Pro Tip: Always add a “flat pattern” to the CAD file—this shows the unbent sheet metal size, which is critical for cutting.

Étape 2: Préparation du matériel

Using the wrong material or size leads to failed bends. Follow these steps:

  1. Sélection des matériaux: Choose metal based on part requirements:
  • Steel plates (par ex., Q235): For high-strength parts (par ex., bâtis de machines)
  • Aluminum plates (par ex., 6061): For lightweight parts (par ex., garniture automobile)
  • Acier inoxydable (par ex., 304): For corrosion-resistant parts (par ex., food industry equipment)
  1. Coupe: Use CNC shearing or laser cutting to trim large material into “blanks” (sheets matching the flat pattern size). Par exemple:
  • A 200mm × 150mm blank for a 100mm × 50mm × 50mm box part.

Étape 3: Configuration de la machine & Mold Installation

Incorrect setup is the #1 cause of oversized or misshapen parts. Here’s how to avoid it:

  1. Die Selection: Match upper (punch) and lower (mourir) dies to the part’s bend radius:
  • Use a 3mm radius die for 2mm aluminum (empêche les fissures)
  • Use a V-shaped die (par ex., 8mm V-width) for 90° bends
  1. Die Installation: Mount dies on the press brake’s upper ram (punch) and lower table (mourir). Secure them with clamps to avoid movement during bending.
  2. Étalonnage des machines: Adjust press brake parameters via the CNC control panel:
  • Pression: Set to 40 kN for 1.5mm steel (too much pressure crushes the material; too little leaves incomplete bends)
  • Vitesse: 5–10 mm/s (faster speeds risk vibration; slower speeds reduce efficiency)
  • Backgauge position: Align the backgauge (a stop that positions the blank) to the first bend’s location (par ex., 50mm from the die edge).

Étape 4: CNC Bending Execution

This is the automated phase—but operator supervision is still key:

  1. Part Positioning: Place the cut blank on the press brake table. The backgauge pushes the blank to the correct position (no manual measuring needed).
  2. Program Start: Press “run” on the CNC panel. The press brake:
  • Lowers the upper die (punch) to contact the blank
  • Applies the preset pressure to bend the material
  • Retracts the punch to release the bent part
  1. In-Process Check: After the first 2–3 parts, measure angles with a protractor to confirm accuracy. If off by 0.5°, adjust the CNC program’s angle offset.

Étape 5: Post-Treatment & Contrôle qualité

Even a perfectly bent part needs finishing and verification:

  1. Ébavurage: Use a file or sanding tool to remove sharp edges from bend points (prevents injury and improves part fit).
  2. Contrôle qualité: Check key dimensions against the CAD file:
  • Bend angle (use a digital protractor for ±0.05° accuracy)
  • Part size (par ex., 100mm × 50mm for the box part)
  • Surface quality (no cracks, dents, or material deformation)

Exemple: A manufacturer producing 1,000 aluminum electrical enclosures followed this process—scrap rate dropped from 12% (manual bending) à 3%, and production time was cut by 60%.

3. Common Challenges in CNC Bending & How to Solve Them

Even with automation, issues can arise. Here’s how to troubleshoot:

DéfiCauseSolution
Bend Angle Too Small (par ex., 85° instead of 90°)Material elastic recovery (metal springs back after bending)Increase the programmed angle by 1–3° (par ex., program 92° for a 90° final bend)
Material Cracking at BendsBend radius too small; material too hardUse a larger die radius (par ex., 4mm instead of 2mm); anneal the material to reduce hardness
Part MisalignmentBackgauge not calibrated; die looseRecalibrate backgauge with a reference block; retighten die clamps
Press Brake VibrationSpeed too high; uneven material thicknessReduce bending speed to 3–5 mm/s; use a thickness gauge to sort material (par ex., separate 1.9mm and 2.1mm steel blanks)

4. Yigu Technology’s Perspective on CNC Bending Machining Process

Chez Yigu Technologie, we’ve supported 250+ sheet metal manufacturers in optimizing their CNC bending machining process. From our experience, 70% of inefficiencies come from outdated programming or poor setup. Notre Yigu CNC Press Brakes feature auto-calibration (cuts setup time by 40%) and integrated CAM software (preloads 1000+ bend parameters for common materials). For small shops, our training program teaches operators to reduce scrap rates to <5%—a client making automotive brackets saw a 50% productivity boost after 1 week of training. We also offer custom die sets for complex parts (par ex., curved bends), ensuring clients avoid tool-related delays.

FAQ: Common Questions About CNC Bending Machining Process

  1. Q: How do I calculate the right press force for CNC bending?

UN: Use the formula: Force (kN) = Material Thickness (mm) × Material Width (mm) × Material Factor (par ex., 2.5 pour l'acier, 1.5 pour l'aluminium). Par exemple, 2mm steel × 100mm width × 2.5 = 500 kN. Most CNC press brakes have built-in calculators to simplify this.

  1. Q: Can CNC bending handle thin materials (par ex., 0.5mm aluminum)?

UN: Yes—but use a low-pressure setting (20–30 kN) and a narrow V-die (4mm largeur) to avoid material warping. Aussi, add a “hold time” (1–2 seconds) in the program to let the material set before releasing.

  1. Q: How often should I maintain a CNC press brake for bending?

UN: Daily: Clean die surfaces and check clamp tightness. Weekly: Lubricate backgauge rails and calibrate pressure. Monthly: Inspect die wear (replace if edges are chipped) and test emergency stops. Following this schedule extends machine life by 3–5 years.

Indice
Faire défiler vers le haut