Classifications de l'usinage CNC: Un guide complet pour la sélection industrielle

brochage CNC

Dans la fabrication moderne, pourquoi les ingénieurs aérospatiaux choisissent-ils des machines CNC à 5 axes alors qu'un petit atelier utilise des modèles à 3 axes? La réponse réside dans la compréhension des classifications de l'usinage CNC, un cadre qui regroupe les systèmes CNC en fonction de leurs capacités., processus, et cas d'utilisation. Choisir la mauvaise catégorie entraîne des coûts inutiles, production lente, ou pièces défectueuses. Cet article […]

Dans la fabrication moderne, why do aerospace engineers choose 5-machines CNC à axes while a small workshop uses 3-axis models? The answer lies in understanding the classifications of CNC machining—a framework that groups CNC systems by their capabilities, processus, et cas d'utilisation. Choisir la mauvaise catégorie entraîne des coûts inutiles, production lente, ou pièces défectueuses. Cet article décompose 6 core classifications of CNC machining, their key features, applications du monde réel, and selection tips, helping you match the right CNC solution to your project needs.

What Are the Core Classifications of CNC Machining?

Usinage CNC (Computer Numerical Control machining) uses automated systems to shape materials, but not all CNC setups are the same. The industry classifies CNC machining based on 6 critical factors: processing technology, machine tool movement, automation degree, number of axes (degrees of freedom), application field, and special functional designs. Each classification solves unique manufacturing challenges—for example, metal cutting CNC machines handle shafts and gears, while laser cutting systems process non-metallic materials like glass.

1. Classification by Processing Technology

This category groups CNC machining by the type of material and the method used to shape it. It’s the most fundamental classification, as it directly ties to the material you’re working with. The table below details the two main subcategories and their key methods:

Processing CategoryMéthodes clésCompatibilité des matériauxApplications idéales
Metal Cutting ProcessingTournant: Shapes rotating workpieces (par ex., arbres) to create outer circles, end faces. – Fraisage: Cuts complex shapes (machines à sous, trous) with rotating tools. – Ennuyeux: Expands existing holes for higher accuracy. – Forage: Creates through/blind holes with drill bits. – Reaming: Finishes drilled holes to improve surface smoothness. – Tapotement: Adds internal threads to holes.Ferrous metals (acier, iron), non-ferrous metals (aluminium, cuivre, titane).– Tournant: Automotive engine shafts, pédales de vélo. – Fraisage: Cavités de moisissures, laptop chassis. – Forage: Electronic enclosure mounting holes.
Non-Metallic Material ProcessingDécoupe Laser: Uses high-energy lasers to melt/vaporize materials. – Découpe au Jet d'Eau: Cuts with high-velocity water (plus abrasives for hard materials). – Usinage par électroérosion (GED): Removes material via electrode-workpiece discharge (for conductive materials). – Ultrasonic Machining: Uses high-frequency vibrations + abrasives to shape brittle materials.Plastiques (ABS, COUP D'OEIL), verre, céramique, composites (fibre de carbone).– Découpe Laser: Acrylic signage, plastic packaging. – Découpe au Jet d'Eau: Stone countertops, panneaux de verre. – GED: Carbide tooling, mold inserts. – Ultrasonic Machining: Ceramic medical implants, glass lenses.

2. Classification by Machine Tool Movement Mode

This classification focuses on how the CNC machine’s tool and workpiece move relative to each other. It determines the complexity of shapes you can produce—from simple holes to curved aerospace parts.

Movement ModeCapacités clésAccuracy LevelApplications idéales
Point Control MachinesOnly controls tool position (no continuous path); moves directly from one point to another.±0,01mm (position accuracy); no path control.Drilling machines (hole positioning), boring machines (single-hole expansion).
Linear Control MachinesMoves tool along straight paths (X, Oui, Axes Z) while cutting; supports constant feed rates.±0,005mm (linear accuracy); uniform surface finish.Simple milling machines (flat surface cutting), tours (straight shaft turning).
Contour Control MachinesMoves tool along complex curved trajectories (par ex., circles, parabolas); supports multi-axis linkage.±0,003mm (contour accuracy); handles 3D shapes.Multi-axis machining centers (aerospace wing parts), mold-making machines (curved cavities).

3. Classification by Degree of Automation

Automation level dictates how much human intervention is needed—critical for production volume and labor costs.

Automation LevelPrincipales fonctionnalitésLabor RequirementIdeal Production Scale
Semi-Automatic CNC MachinesAutomates cutting/machining but needs manual steps (par ex., workpiece clamping, tool changes).1 operator per machine; constant supervision for manual tasks.Petits lots (10–50 pièces), custom prototypes (par ex., one-off mold inserts).
Fully Automatic CNC MachinesHandles the entire process automatically: auto loading/unloading, auto tool change, auto quality checks.1 operator manages 2–3 machines; minimal supervision.Production en grand volume (1,000+ parties), mass manufacturing (par ex., composants automobiles).

4. Classification by Degrees of Freedom (Number of Axes)

The number of axes (linéaire + rotary) determines the machine’s ability to access complex part geometries. This is the most widely used classification for industrial CNC selection.

Number of AxesKey Axes ConfigurationCapacitésIdeal Industries/Parts
3-Machines CNC à axes3 axes linéaires (X, Oui, Z); tool moves along these axes to cut fixed workpieces.Handles 2D/3D parts with simple geometries; no undercutting or complex curves.Fabrication générale (parenthèses, simple gears), biens de consommation (boîtiers en plastique).
4-Machines CNC à axes3 axes linéaires + 1 axe rotatif (par ex., A-axis: rotates around X-axis).Accesses side/angled features; reduces workpiece repositioning by 50%.Aérospatial (simple engine parts), médical (bone screws with angled holes).
5-Machines CNC à axes3 axes linéaires + 2 axes rotatifs (par ex., UN + B axes); tool can tilt/rotate freely.Machines complex 3D surfaces (par ex., pales de turbine) dans une seule configuration.Aérospatial (jet engine components), moule & mourir (deep cavities with undercuts), luxury automotive (curved body panels).

5. Classification by Application Field

CNC machines are often tailored to specific industries—optimized for their unique materials and part requirements.

Application FieldMachine FeaturesMaterial FocusExample Parts
General-Purpose CNC MachinesPolyvalent; works with multiple materials and part types; easy to reconfigure.Métaux, plastiques, composites.General machinery (boîtes de vitesses), quincaillerie pour meubles (charnières), electronic brackets.
Specialized CNC MachinesCustomized for industry-specific needs (par ex., résistance aux hautes températures, précision des petites pièces).Industry-specific materials (par ex., titanium for aerospace, food-grade stainless steel for medical).– Automobile: Engine block machining lines. – Médical: Dental implant mills. – Aérospatial: Titanium component lathes.

6. Other Special Classifications

These include machines with unique, combined functions—designed to solve niche manufacturing challenges.

Special TypeKey FunctionsAvantage cléIdeal Use Cases
Multi-Processing MachinesCombines 2+ machining types (par ex., tournant + fraisage, forage + découpe laser) in one machine.Eliminates workpiece transfer between machines; cuts production time by 40%.Complex parts needing multiple processes (par ex., automotive shafts with milled slots, medical tools with drilled holes + threaded ends).
Micromachining MachinesFocuses on ultra-small parts/features; achieves nanometer-level resolution.Processes parts as small as 0.1mm (par ex., microelectronic components); haute précision (±0.0001mm).Microelectronics (semiconductor chips), dispositifs médicaux (micro-aiguilles), aérospatial (micro-capteurs).

How to Choose the Right CNC Machining Classification?

Follow this 4-step process to avoid mismatched selections:

  1. Define Material & Géométrie:
  • If working with metal shafts → Metal cutting (tournant) + 3-axe CNC.
  • If making complex aerospace turbine blades → Contour control + 5-axe CNC.
  1. Match Automation to Volume:
  • Petits lots (10 parties) → Semi-automatic CNC.
  • Production de masse (10,000 parties) → Fully automatic CNC.
  1. Consider Budget & Retour sur investissement:
  • 5-axis machines cost 2–3x more than 3-axis models—only invest if complex parts justify the expense.
  1. Test with Prototypes:
  • For high-stakes projects (par ex., implants médicaux), run a prototype on the chosen CNC type to validate accuracy and efficiency.

Yigu Technology’s Perspective

Chez Yigu Technologie, we believe understanding classifications of CNC machining is the first step to smart manufacturing. Our product line covers all key classifications: 3/4/5-axis CNC machines for metal cutting, fully automatic lines for high-volume production, and specialized micromachining systems for microelectronics. We help clients select the right category by analyzing their material, volume, and geometry needs—for example, a automotive supplier switched from 3-axis to 5-axis machines, cutting part rework by 60%. As Industry 4.0 advances, we’re integrating AI into all classifications to auto-optimize tool paths, making CNC selection and operation even more accessible.

FAQ

  1. Q: Can a 5-axis CNC machine replace a 3-axis machine for simple parts?

UN: Technically yes, but it’s not cost-effective. 5-axis machines have higher upfront costs (2–3x more) and longer setup times for simple parts. Stick to 3-axis machines for brackets, engrenages, or enclosures to save money.

  1. Q: Which CNC classification is best for non-metallic materials like glass?

UN: Non-metallic material processing—specifically ultrasonic machining (for brittle glass) ou découpe laser (for precise glass panels). Avoid metal cutting CNC machines, as they’ll crack or shatter glass.

  1. Q: How much more productive is a fully automatic CNC machine vs. a semi-automatic one?

UN: Fully automatic machines are 2–3x more productive. Par exemple, a semi-automatic CNC makes 50 parties/jour (with operator breaks), while a fully automatic one makes 120–150 parts/day (24/7 operation with minimal labor).

Indice
Faire défiler vers le haut