If you’re designing parts that need to handle heavy loadset resist wear—like truck gears, arbres de grue industrielle, ou des composants d'équipement de construction : vous avez besoin d'un matériau qui combine un noyau plus résistant avec un matériau dur., durable surface.AISI 8630 acier allié is the heavy-duty solution: comme nickel-chrome-molybdène à faible teneur en carbone (Ni-Cr-Mo) alliage, il excelle en carburation (durcissement superficiel) while offering a stronger core than lower-carbon grades like AISI 8620. Ce guide détaille ses propriétés, applications du monde réel, processus de fabrication, and material comparisons to help you solve “heavy-load + wear” design challenges.
1. Material Properties of AISI 8630 Acier allié
AISI 8630’s performance stems from its balanced composition: medium-low carbon (0.28–0.33%) enables effective carburizing, nickel boosts coredureté, chromium enhances surface hardenability, and molybdenum improveslimite de fatigue for cyclic loads. Let’s explore its key properties in detail.
1.1 Composition chimique
AISI 8630 follows ASTM A29/A29M standards, with elements optimized for heavy-duty carburizing. Below is its typical composition:
| Élément | Symbole | Gamme de contenu (%) | Key Role |
|---|---|---|---|
| Carbone (C) | C | 0.28 – 0.33 | Enables carburizing (surface C: 0.8–1.0%) while keeping the core strong (not overly soft) |
| Nickel (Dans) | Dans | 0.40 – 0.70 | Core toughness booster; maintainsimpact toughness à -30 °C for heavy-load shock |
| Chrome (Cr) | Cr | 0.40 – 0.60 | Enhances surface hardenability; améliorerésistance à la corrosion of the carburized layer |
| Molybdène (Mo) | Mo | 0.15 – 0.25 | Raiseslimite de fatigue for cyclic loads; prevents surface brittleness after carburizing |
| Manganèse (Mn) | Mn | 0.70 – 0.90 | Refines grain structure; boosterésistance à la traction without reducing core ductility |
| Silicium (Et) | Et | 0.15 – 0.35 | Aids deoxidation; supports stability during high-temperature carburizing |
| Phosphore (P.) | P. | ≤ 0.035 | Minimized to avoid brittle fracture in the carburized layer or core |
| Soufre (S) | S | ≤ 0.040 | Controlled to balanceusinabilité et qualité de surface (lower S = smoother wear surfaces) |
| Vanadium (V) | V | ≤ 0.03 | Trace element; refines grains for uniform surface and core properties |
| Cuivre (Cu) | Cu | ≤ 0.30 | Trace element; adds mild atmospheric corrosion resistance for outdoor heavy equipment |
1.2 Propriétés physiques
These traits make AISI 8630 ideal for heavy-duty carburized parts in harsh environments:
- Densité: 7.85 g/cm³ (same as standard steels)—simplifies weight calculations for large parts like truck axles
- Point de fusion: 1,415 – 1,445 °C (2,588 – 2,630 °F)—compatible with forging and long carburizing cycles
- Conductivité thermique: 41.5 Avec(m·K) à 20 °C; 37.5 Avec(m·K) à 300 °C—ensures even carbon diffusion during carburizing (no uneven hardness)
- Coefficient de dilatation thermique: 11.5 × 10⁻⁶/°C (20 – 100 °C)—minimizes distortion for large parts (par ex., crane shafts) during heat treatment
- Propriétés magnétiques: Ferromagnetic—enables non-destructive testing (CND) like magnetic particle inspection to detect surface cracks from heavy use.
1.3 Propriétés mécaniques
AISI 8630’s mechanical performance shines in carburized condition, with a hard surface and strong core. Below are typical values:
| Propriété | Méthode de mesure | Non-Carburized (Annealed) | Carburized (0.8–1.0% Surface C) |
|---|---|---|---|
| Surface Hardness | CRH | 20 – 24 CRH | 58 – 60 CRH |
| Core Hardness | CRH | 20 – 24 CRH | 35 – 40 CRH |
| Résistance à la traction | MPa (ksi) | 700 MPa (102 ksi) | 1,250 MPa (181 ksi) |
| Limite d'élasticité | MPa (ksi) | 400 MPa (58 ksi) | 950 MPa (138 ksi) |
| Élongation | % (dans 50 mm) | 25 – 29% | 10 – 13% |
| Résistance aux chocs | J. (à -30 °C) | ≥ 80 J. | ≥ 50 J. (core toughness) |
| Fatigue Limit | MPa (rotating beam) | 350 MPa | 700 MPa |
1.4 Autres propriétés
AISI 8630’s traits solve heavy-duty design challenges:
- Weldability: Good—low carbon allows welding (preheat to 150–200 °C for thick parts); carburized parts need surface grinding to remove carbon before welding.
- Formabilité: Fair—soft enough in annealed condition (20–24 HRC) for forging into large shapes (par ex., ébauches d'engrenages) but less bendable than AISI 8620.
- Usinabilité: Good—annealed AISI 8630 cuts easily with carbide tools; carburized parts require grinding or CBN tools for final shaping.
- Résistance à la corrosion: Moderate—chromium in the carburized layer resists mild rust; for construction or mining use, add epoxy coating or zinc plating.
- Load-Bearing Wear Resistance: Excellent—hard surface (58–60 HRC) résiste à l'usure, while the stronger core (35–40 HRC vs. 30–35 HRC for 8620) handles heavy loads without bending.
2. Applications of AISI 8630 Acier allié
AISI 8630’s “strong core + hard surface” makes it ideal for heavy-duty parts that can’t fail under load or wear. Here are its key uses:
- Automobile (Heavy-Duty): Truck transmission gears, axle shafts, and differential housings—handles high torque (500+ N·m) and road wear.
- Construction Equipment: Excavator bucket teeth, bulldozer axle shafts, and crane hooks—absorbs impact from digging/lifting and resists dirt abrasion.
- Machines industrielles: Steel mill gearboxes, mining conveyor shafts, and hydraulic press rams—supports loads up to 50+ tons and resists metal-on-metal wear.
- Composants mécaniques: Heavy-duty bearings (for large motors), rotors de pompe (for thick fluids), and turbine shafts—tolerates cyclic loads and harsh operating conditions.
- Aérospatial (Ground Support): Aircraft tow tractor gears, cargo loader components—balances strength and wear resistance for heavy ground equipment.
- Défense: Military truck axles, armored vehicle track links—tough enough for off-road use and ballistic impact.
3. Manufacturing Techniques for AISI 8630 Acier allié
Producing AISI 8630 focuses on carburizing and forging to handle heavy loads. Here’s the step-by-step process:
- Sidérurgie:
- AISI 8630 is made using an Four à arc électrique (AEP) (recycles scrap steel) ou Four à oxygène de base (BOF). Nickel, chrome, and molybdenum are added to hit the 0.40–0.70%, 0.40–0.60%, and 0.15–0.25% ranges, respectivement.
- Forgeage & Roulement:
- Most AISI 8630 parts start as Hot Forged blanks (1,150 – 1,250 °C)—forging aligns grain structure, boosting core strength for heavy loads. After forging, blanks are Laminé à chaud to rough shapes (thick bars, assiettes) or left as-forged for large parts (par ex., crane shafts).
- Recuit:
- Heated to 815–845 °C, held 3–4 hours, slow-cooled to 650 °C. Softens the steel (20–24 HRC) for machining and removes forging stress.
- Usinage:
- Annealed AISI 8630 is machined into near-final shapes (par ex., dents d'engrenage, shaft ends) using turning, fraisage, ou perçage. Carbide tools are recommended for thick sections to avoid tool wear.
- Cémentation (Heavy-Duty Focus):
- Gas Carburizing: Parts are heated to 880–920 °C in carbon-rich gas for 6–16 hours (longer than AISI 8620) to create a 1.0–1.5 mm thick hard layer (0.8–1.0% C).
- Trempe: Cooled to 830–850 °C, held 30 minutes, then quenched in oil. Hardens surface to 58–60 HRC and core to 35–40 HRC.
- Trempe: Reheated to 200–250 °C for 2–3 hours, air-cooled. Reduces surface brittleness while keeping core strength.
- Traitement de surface:
- Affûtage: Carburized parts are precision-ground to smooth surfaces and meet tight tolerances (par ex., gear tooth accuracy).
- Grenaillage: Blasts the surface with metal balls to reduce residual stress and boost limite de fatigue (critical for cyclic heavy loads).
- Revêtement: Epoxy coating (for construction equipment) or zinc plating (pour les parties extérieures) pour résister à la corrosion.
- Contrôle de qualité:
- Chemical Analysis: Spectrometry verifies alloy content (per ASTM A29/A29M).
- Mechanical Testing: Tensile tests confirm core strength; hardness tests check surface (58–60 HRC) and core (35–40 HRC).
- Microstructural Analysis: Ensures a uniform carburized layer and fine-grain core (no large grains that cause weakness).
- CND: Ultrasonic testing checks for internal defects; radiographic testing inspects thick sections (par ex., axle shafts).
4. Études de cas: AISI 8630 in Action
Real heavy-duty projects highlight AISI 8630’s performance.
Étude de cas 1: Heavy-Duty Truck Axle Shafts (NOUS.)
A truck manufacturer had to replace AISI 8620 axle shafts every 300,000 km—they bent under heavy loads. They switched to AISI 8630 arbres, carburized to 59 HRC and shot-peened. Les nouveaux arbres ont duré 500,000 km—no bending or wear—because the stronger core (38 CRH) handled 10-ton loads, and the hard surface resisted road abrasion. This saved the manufacturer $2 million in warranty costs annually.
Étude de cas 2: Mining Conveyor Gears (Australia)
A mining site’s conveyor gears (AISI 4140) failed every 18 months due to wear and load cracking. They installed AISI 8630 engrenages, carburized to 60 CRH. The gears lasted 4 years—wear was reduced by 70%, and no cracks occurred—because the carburized surface resisted dirt abrasion, and the nickel-boosted core absorbed conveyor load shocks. This cut maintenance downtime by 60%.
5. AISI 8630 contre. Other Materials
How does AISI 8630 compare to similar heavy-duty and carburizable steels?
| Matériel | Similarities to AISI 8630 | Différences clés | Idéal pour |
|---|---|---|---|
| AISI 8620 | Ni-Cr-Mo carburizable steel | Lower carbon (0.18–0.23%); softer core (30–35 HRC); 10% moins cher | Light-to-medium load carburized parts |
| AISI 4140 | Cr-Mo alloy steel | No nickel; not ideal for carburizing; lower toughness; 15% moins cher | Non-carburized medium-load parts |
| AISI 4340 | Ni-Cr-Mo alloy steel | Higher nickel (1.65–2.00%); better toughness; no carburizing; 30% pricier | Heavy-load non-carburized parts (par ex., train d'atterrissage) |
| AISI 1045 | Carbon steel | No alloying; poor carburizing; weaker; 40% moins cher | Faible charge, low-wear parts |
| Acier inoxydable 410 | Carburizable steel | Meilleure résistance à la corrosion; lower core strength; 3× pricier | Wet-environment light-load parts |
Yigu Technology’s Perspective on AISI 8630 Acier allié
Chez Yigu Technologie, AISI 8630 is our top choice for heavy-duty carburized parts. Its medium-low carbon Ni-Cr-Mo composition solves the biggest pain point for clients: getting a part that resists wearet handles heavy loads—critical for trucks, construction, and mining. We supply AISI 8630 in forged blanks, thick bars, or machined components, with custom carburizing (1.0–1.5 mm layers) et grenaillage. For clients upgrading from AISI 8620 ou 4140, AISI 8630 delivers 50% longer lifespan for heavy loads at a small premium, cutting long-term costs.
FAQ About AISI 8630 Acier allié
- Can AISI 8630 be used without carburizing?
Yes—but it’s not optimal. Non-carburized AISI 8630 has good strength (700 traction MPa) but poor wear resistance, so it’s only used for heavy-load parts with no friction (par ex., non-wearing brackets). Carburizing unlocks its full wear-load potential. - What’s the maximum part thickness for AISI 8630 carburation?
AISI 8630 works well for parts up to 150 mm thick—its chromium content ensures uniform carburizing. For thicker parts (>150 mm), extend carburizing time (16+ heures) and use oil quenching to avoid core softening. - Is AISI 8630 more expensive than AISI 8620?
Yes—about 10% plus. But the extra cost is worth it for heavy loads: AISI 8630’s stronger core (35–40 HRC vs. 30–35 HRC for 8620) prevents bending, and its longer lifespan cuts maintenance costs by 30–50% over time.
