Acier inoxydable AISI 304H: Guide des performances à haute température & Utilisations

Fabrication de pièces métalliques sur mesure

Si vous avez besoin d'un acier inoxydable qui résiste à une chaleur extrême, pensez aux tubes de chaudière., fours de raffinerie, ou tuyauterie de centrale électrique : l'acier inoxydable AISI 304H est la solution. Le « H » signifie « à haute teneur en carbone »,« un ajustement clé qui lui confère une bien meilleure résistance à haute température que la norme 304 ou 304L bas carbone. Ce guide détaille tout ce que vous devez savoir pour […]

Si vous avez besoin d'un acier inoxydable qui résiste à une chaleur extrême, pensez aux tubes de chaudière., fours de raffinerie, or power plant piping—AISI 304H stainless steel est la solution. Le « H » signifie « à haute teneur en carbone »,« un ajustement clé qui lui confère une bien meilleure résistance à haute température que la norme 304 ou 304L bas carbone. Ce guide détaille tout ce que vous devez savoir pour sélectionner, fabriquer, and source AISI 304H for your high-heat projects.

1. Acier inoxydable AISI 304H: Material Overview & Caractéristiques

AISI 304H’s ability to handle high temperatures starts with its precise chemistry and adherence to strict industry standards. Let’s dive into its core details:

Key Chemical Composition

ÉlémentGamme de contenuRole in AISI 304H
Chrome (Cr)18.0–20.0%Forme une couche protectrice d'oxyde (resists high-temp oxidation)
Nickel (Dans)8.0–12.0%Stabilizes the austenitic structure (prevents brittle phases at high heat)
Carbone (C)0.04–0.10%The “H” advantage—strengthens grain boundaries for creep resistance (critical for long-term high-heat use)
Manganèse (Mn)≤2.0%Boosts formability and prevents cracking during hot working
Silicium (Et)≤1.0%Enhances oxidation resistance at temperatures above 800°C

Critical Specifications & Physical/Mechanical Traits

Specification/PropertyValeurWhy It Matters for High-Heat Use
UNS DesignationS30409Global identifier for sourcing high-carbon 304
ASTM/ASME StandardsASTM A240 (sheets/plates), ASME SA-240Ensures quality for pressure vessels and high-temp equipment
Densité7.93 g/cm³Consistent with other 304 grades—easy to calculate weight for structural designs
Point de fusion1,400–1,450°C (2,550–2,650°F)Withstands extreme heat (par ex., furnace interiors)
Résistance à la traction (Room Temp)515 MPa (74,700 psi)Strong enough for structural high-heat parts (par ex., headers)
Limite d'élasticité (Room Temp)170 MPa (24,700 psi)Resists deformation under initial heat stress
Dureté95 HRB (Rockwell B) / 210 BHNTough enough for wear, but machinable with proper tools

Exemple: A power plant uses ASME SA-240 304H plates for boiler headers—meeting tensile strength specs ensures the parts don’t fail at 900°C.

2. Acier inoxydable AISI 304H: High-Temperature Properties & Résistance au fluage

AISI 304H’s biggest strength is its performance at extreme temperatures—especially its resistance tocreep (slow deformation under long-term heat and pressure). Here’s how it stacks up:

High-Temperature Performance Breakdown

TemperatureKey PropertyValeurReal-World Relevance
550°C (1,020°F)Short-Time Tensile Strength310 MPa (45,000 psi)Maintains strength for refinery reformer tubes
700°C (1,290°F)100,000-Hour Creep Strength20 MPa (2,900 psi)Resists slow deformation in long-running boilers
870°C (1,600°F)Oxidation ResistanceNo scaling (up to 1,000°C)Safe for furnace components and flare stacks
900°C (1,650°F)Service Temperature LimitMaximum continuous use tempAvoids sigma phase embrittlement (brittleness from high-heat phase changes)

Critical High-Heat Advantages (contre. 304L)

TraitAISI 304HAISI 304LWhy It Matters
Résistance au fluage (700°C)20 MPa (100,000 heures)12 MPa (100,000 heures)304H lasts 2x longer in high-pressure boilers
Oxidation ResistanceUp to 1,000°CUp to 870°C304H works in hotter furnace environments
Sensitization RiskFaible (controlled grain size)Très faible (faible teneur en carbone)304H avoids weld decayet handles high heat

Étude de cas: A refinery replaced 304L reformer tubes with 304H. The 304L tubes failed after 2 années (creep deformation), while 304H tubes lasted 5 years—saving $300,000 in replacement costs.

3. Acier inoxydable AISI 304H: Traitement thermique & Traitement

Proper heat treatment is critical to unlock AISI 304H’s high-temperature potential. Here’s what you need to know:

Key Heat Treatment Processes

  • Solution Annealing: Chauffer à 1,040–1,100°C (1,900–2,010°F), hold for 30–60 minutes, then quench in water. Ce:
    • Dissolves excess carbides (prevents sensitization).
    • Controls grain size to ASTM 7 or coarser (coarse grains improve creep resistance—fine grains weaken at high heat).
    • Softens the metal for subsequent forming.
  • Stabilizing Anneal (Facultatif): Pour pièces épaisses (>25mm), heat to 850–900°C (1,560–1,650°F) after solution annealing. This reduces residual stress without sacrificing creep strength.
  • Residual Stress Relief: For welded parts, heat to 800–850°C (1,470–1,560°F) to relieve stress—critical for pressure vessels.

Processing Guidelines

  • Hot Working: Use temperatures of 1,100–1,260°C (2,010–2,300°F) for forging, rolling, or bending. Avoid working below 900°C—this causes brittleness.
  • Cold Working: Limit cold work to 20–30% (par ex., bending or stamping). Excess cold work increases strain hardening, which reduces creep resistance. Anneal after cold working to reset properties.
  • Grain Size Control: Never use fine-grain 304H (ASTM 8 or finer). Coarse grains (ASTM 7 or coarser) are mandatory for high-heat applications—they resist creep better.

Pro Tip: A manufacturer once solution-annealed 304H at 980°C (trop bas)—the grain size was ASTM 9 (bien), and the parts failed in a boiler after 6 mois. Re-annealing at 1,050°C fixed the grain size and performance.

4. Acier inoxydable AISI 304H: Soudage, Fabrication & Machining Guidelines

Welding AISI 304H requires care to maintain its high-temperature strength—using the right consumables and techniques is key.

Welding Best Practices

AspectRecommendationWhy It Works for High-Heat Use
Filler MetalER308H (TIG/MIG) or E308H (stick welding)Matches 304H’s carbon content—ensures weld metal has the same creep resistance as the base metal
Preheat Requirements150–200°C (300–390°F) pour les pièces >25mm d'épaisseurPrevents cold cracking and reduces HAZ (Heat-Affected Zone) stresser
Post-Weld Heat Treatment (PWHT)800–850°C (1,470–1,560°F), prise 1 hour per 25mm thicknessRelieves HAZ stress and stabilizes carbides—critical for creep resistance
HAZ Sensitization MitigationUse low-heat input welding (TIG > MOI)Minimizes time spent in the sensitization range (450–850°C), avoiding weld decay

Usinage & Forming Tips

  • Machining Speeds/Feeds: Utiliser des outils en carbure (Revêtement TiAlN) to handle 304H’s hardness:
    • Tournant: 80–120 m/min speed, 0.1–0.15 mm/rev feed.
    • Fraisage: 60–100 m/min speed, 0.05–0.1 mm/tooth feed.
  • Cutting Fluid: Use heavy-duty soluble oil to reduce friction—304H’s high carbon can cause tool wear if not lubricated.
  • Formabilité: For high-heat parts (par ex., tubes), use hot forming (1,100–1,200°C) instead of cold forming. Hot forming maintains grain size and creep resistance.

Exemple: A boiler manufacturer uses TIG welding with ER308H for 304H tubes. PWHT at 820°C ensures the welds resist creep—their boilers run continuously at 850°C without issues.

5. Acier inoxydable AISI 304H: Product Forms, Sizes & Supply Chain

AISI 304H is available in forms tailored to high-heat applications. Here’s how to source it:

Common Product Forms & Sizes

FormTypical SizesKey High-Heat Uses
Plates6–100mm thickness; 1x2m to 3x6mBoiler headers, pressure vessel shells
Seamless Pipes/Tubes10–300mm OD; 1–10mm wall thicknessSuperheater tubes, refinery reformer tubes
Round Bars10–200mm diameter; 1–6m lengthForged fittings, furnace bolts
Forged Fittings1/2″–24″ tailles (elbows, tees)High-pressure steam piping connections
Coil Stock1–5mm thickness; 1219mm largeurHigh-temperature ducting for furnaces

Supply Chain Tips

  • Price: 304H costs $4.00–$5.00 per kg (2024 estimates)—slightly more than 304 ($3.00–$4.00/kg) but worth it for high-heat durability.
  • Délai de mise en œuvre: 3–4 weeks for stock sizes (par ex., 20mm OD tubes); 6–8 weeks for custom sizes (par ex., thick pressure vessel plates).
  • Fournisseurs: Choose ISO 9001-certified suppliers who provide mill test reports (MTRs) confirming:
    • Carbon content (0.04–0.10%).
    • Grain size (ASTM 7 or coarser).
    • Creep test data (for critical applications like boilers).

Pro Tip: A power plant ordered 304H superheater tubes from a supplier with ASME SA-240 certification—this ensured the tubes met pressure vessel code requirements.

6. Acier inoxydable AISI 304H: Applications industrielles & Études de cas

AISI 304H is the go-to grade for industries where long-term high-heat performance is non-negotiable. Here are its top uses:

1. Power Generation

  • Boiler Tubes & Superheater Headers: Carries high-pressure steam (800–900°C) in coal, gaz, or nuclear power plants. A 500MW power plant uses 304H tubes—they’ve operated for 8 years without creep deformation.
  • Steam Distribution Manifolds: Distributes high-temp steam to turbines—304H’s oxidation resistance prevents rust buildup.

2. Huile & Gas Refining

  • Hydrogen Reformer Tubes: Converts natural gas to hydrogen (900–950°C)—304H’s creep resistance avoids tube failure. A refinery reported 304H tubes last 3x longer than 304L in this application.
  • Flare Stack Tips: Burns off excess gas at 1,000°C—304H resists scaling and corrosion from fuel byproducts.

3. Chimique & Petrochemical

  • Ethylene Cracking Coils: Breaks down hydrocarbons into ethylene (850–950°C)—304H’s high-temp strength maintains coil shape.
  • Furnace Components: Liners, doors, and ducting for chemical furnaces—304H withstands continuous heat without brittleness.

4. Heavy Industry

  • Heat Exchanger Shells: Handles high-temp fluids (par ex., molten salts)—304H’s pressure resistance avoids leaks.
  • High-Temperature Ducting: Moves hot gases in steel mills—304H resists wear from dust and heat.

Yigu Technology’s Perspective

Chez Yigu Technologie, AISI 304H is our specialty for power, refinery, and chemical clients needing high-heat reliability. We supply 304H plates, seamless tubes, and bars (UNS S30409, ASTM A240/ASME SA-240) with MTRs confirming carbon content (0.04–0.10%) and grain size (ASTM 7+). For a refinery project, we provided custom 304H reformer tubes—our strict PWHT (820°C) ensured welds matched base metal creep strength, and the tubes have run for 4 years without issues. We also offer technical support, sharing heat treatment and welding tips to maximize part life. While 304H costs more upfront, its long service life delivers ROI by cutting downtime and replacements.

FAQ

  1. Can AISI 304H be used in marine environments?
    No—304H’s high carbon doesn’t improve chloride resistance. It will rust in saltwater within 1–2 years. Use 316H (adds molybdenum for chloride resistance) for marine high-heat applications (par ex., shipboard boilers).
  2. What’s the difference between AISI 304H and 304L for high-heat use?
    304H (0.04–0.10% carbon) has far better creep resistance (lasts longer at high heat) and a higher service temp (1,000°C contre. 304L’s 870°C). 304L (≤0.03% carbon) is better for low-heat corrosion-prone areas (par ex., transformation des aliments) but fails quickly in high-heat equipment.
  3. Do I need to control grain size for AISI 304H?
    Yes—grain size is critical. AISI 304H must have a coarse grain size (ASTM 7 or coarser) to resist creep. Fine grain sizes (ASTM 8+) weaken at high temperatures and cause premature failure in boilers or furnaces. Always confirm grain size via MTR before use.
Indice
Faire défiler vers le haut