If you’ve ever struggled with loose fits, broken threads, or post-machining delays when adding threaded connections to 3D prints, 3D printing threaded holes est la solution dont vous avez besoin. This technology lets you create functional threads directly during printing—no drilling or tapping required—but how do you ensure precision? Which materials work best? And how can you fix common thread flaws? Ce guide répond à toutes ces questions, helping you master 3D printed threaded holes for reliable part assembly.
What Are 3D Printed Threaded Holes?
3D printed threaded holes are internal or external thread features built directly into 3D printed parts during the additive manufacturing process. Unlike traditional methods—where you print a plain hole first, then drill and tap threads later—this technology integrates threads into the 3D model, so the printer creates them layer by layer.
Think of it like baking a cake with pre-cut grooves for frosting: instead of cutting the grooves after baking (ce qui risque de casser le gâteau), you shape the pan to include the grooves—resulting in a seamless, ready-to-use feature. For 3D prints, this means parts are assembly-ready as soon as they come off the printer, saving time and reducing errors.
These threaded holes are ideal for parts that need repeated assembly and disassembly, tel que:
- Electronic device housings (Par exemple, étuis pour smartphone, computer brackets)
- Assemblages mécaniques (Par exemple, joints de robot, machine)
- Prototypes for product testing (Par exemple, furniture hardware prototypes)
Step-by-Step Process for 3D Printing Threaded Holes
Creating high-quality 3D printed threaded holes isn’t random—it follows a linear, flux de travail reproductible. Vous trouverez ci-dessous une ventilation détaillée de chaque étape, de la conception au post-traitement:
- Design the Threaded Feature in CAD Software
Commencer par GOUJAT (Conception assistée par ordinateur) logiciel (Par exemple, Solide, Fusion 360). Ici, you define critical thread parameters:
- Thread type: Métrique (Par exemple, M3, M5) or imperial (Par exemple, 1/4-20 UNC)
- Taille: Diamètre (Par exemple, 3mm for M3) and pitch (Par exemple, 0.5mm for M3)
- Profondeur: How far the thread extends into the part (Par exemple, 10mm for a secure fit)
Pour la pointe: Add a small “chamfer” (45° Angle) at the hole’s opening—this guides fasteners into the thread, preventing cross-threading.
- Optimize the 3D Model for Printing
Adjust the model to avoid common thread failures:
- Pour les imprimantes FDM: Increase the thread’s wall thickness by 0.2mm (FDM plastic shrinks slightly, so extra thickness prevents thin, brittle threads).
- Pour les imprimantes en résine: Use a “support blocker” to avoid supports inside the thread (supports leave rough surfaces that ruin fit).
- Slice the Model with Thread-Friendly Settings
Import the CAD model into slicing software (Par exemple, Prusasliseur, Traitement) and tweak these settings:
- Hauteur de couche: 0.1-0.15MM (thinner layers create smoother thread walls, improving fit).
- Infill density: 80-100% for the thread area (higher infill makes threads stronger—avoid 50% or lower, which causes thread stripping).
- Vitesse d'impression: 40-50mm / s (slower speed reduces vibration, which can warp thread shapes).
- Print the Part
Chargez le fichier découpé dans votre imprimante 3D et lancez l'impression. Pour FDM, use a 0.4mm nozzle (smaller nozzles, like 0.25mm, create finer threads but take longer). For resin, use a “high-detail” resin (Par exemple, Anycubic ABS-Like Resin) that resists cracking.
- Post-Process (Si nécessaire)
Most 3D printed threaded holes work without post-processing, but these steps improve durability:
- Polissage: Use a 400-grit sandpaper to gently smooth thread walls (avoids rough spots that scratch fasteners).
- Traitement thermique (pour ABS / PC): Bake the part at 80°C for 1 heure (this reduces plastic stress, making threads more resistant to wear).
3D Printed Threaded Holes: Matériel & Printer Comparison
Not all materials or printers perform equally for threaded holes. Below is a table comparing the best options, so you can choose based on your project’s needs:
Type de matériau | Meilleure technologie d'imprimante | Thread Strength | Cas d'utilisation idéal | Défis communs & Correctifs |
PLA | FDM | À faible médium (good for prototypes) | Pièces sans chargement (Par exemple, supports décoratifs) | Brittle in cold temperatures → Solution: Use “tough PLA” (Par exemple, eSun Tough PLA) for better flexibility. |
Abs | FDM | Moyen-élevé (Résiste) | Pièces de chargement (Par exemple, supports automobiles) | Shrinks 3-5% → Solution: Compensate by increasing thread diameter by 0.3mm in CAD. |
Pivot | FDM | Haut (flexible & fort) | Outdoor or wet environments (Par exemple, pièces d'outils de jardin) | Sticks to printer beds → Solution: Use a PEI bed or hairspray to prevent warping. |
Résine (ABS-Like) | SLA/MSLA | Haut (lisse & précis) | Petit, pièces détaillées (Par exemple, fermoirs de bijoux, composants de dispositifs médicaux) | Brittle under impact → Solution: Apply a thin layer of resin-based clear coat to add flexibility. |
Real-World Applications of 3D Printed Threaded Holes
3D printed threaded holes solve unique problems across industries. Below are specific examples showing their impact:
1. Industrie de l'électronique
A startup building a portable speaker needed a case that could be opened for repairs. Ils ont utilisé 3D printed threaded holes (M3 threads, PETG material) in the case’s edges. The threads let them attach the top and bottom halves with screws—no glue required. Ce temps d'assemblage coupé par 50% (contre. traditional tapped holes) and let customers replace batteries easily.
2. Industrie automobile
A car parts manufacturer tested a prototype engine mount using ABS 3D printed threaded holes (M5 threads). The threads secured the mount to the car’s frame, and the team could quickly disassemble the prototype to adjust the design. Avec l'usinage traditionnel, each design iteration would take 3 jours; avec impression 3D, it took 8 heures.
3. Conception de meubles
A furniture designer created a modular bookshelf prototype with 3D printed threaded holes (1/4-20 imperial threads) in the shelf brackets. The threads let users assemble the bookshelf without tools (using hand-tightened screws) and reconfigure it later. Customer testing showed 90% preferred the 3D printed design over traditional bolt-and-nut assemblies, as it was lighter and easier to use.
Common 3D Printed Thread Problems & Solutions
Even with careful design, thread issues can happen. Below are three frequent problems and step-by-step fixes:
Problème 1: Fasteners Don’t Fit (Too Tight/Too Loose)
Cause: Incorrect thread size in CAD (Par exemple, designing an M3 hole but printing an M2.8 hole due to shrinkage).
Solution:
- Measure the printed hole with a caliper (check the inner diameter).
- If too tight: Increase the thread diameter by 0.1mm in CAD and reprint.
- If too loose: Decrease the diameter by 0.1mm (pour FDM) or 0.05mm (pour résine).
Problème 2: Threads Strip When Fasteners Are Tightened
Cause: Low infill density (Les fils sont faibles) or thin wall thickness (threads break under pressure).
Solution:
- In slicer software, set infill density to 100% for the thread area (use a “mesh edit” tool to select only the thread region).
- In CAD, increase the thread’s wall thickness by 0.3mm (pour FDM) or 0.1mm (pour résine).
Problème 3: Threads Are Rough or Uneven
Cause: Thick layer height (0.2mm ou plus) or printer vibration (warped thread walls).
Solution:
- Reduce layer height to 0.1mm in the slicer.
- Place the printer on a stable surface (Par exemple, a concrete floor) and tighten loose screws on the printer’s frame (reduces vibration).
Future Trends of 3D Printed Threaded Holes
À mesure que la technologie d'impression 3D avance, threaded holes will become even more versatile. Voici trois tendances à regarder:
- Multi-Material Threads: Printers will soon print threads with two materials—e.g., a flexible TPU thread inside a rigid PLA part. This creates “self-sealing” threads that work for watertight applications (Par exemple, Bouchons de bouteille d'eau).
- AI-Powered Design: AI tools will automatically optimize thread parameters (taille, profondeur, remplissage) based on the part’s use. Par exemple, if you design a bike handlebar, AI will suggest M6 threads with 100% remplissage (pour la force) contre. M3 threads for a decorative part.
- Metal 3D Printed Threads: Metal printers (Par exemple, GDT) will become more affordable, letting manufacturers print high-strength metal threads (Par exemple, titane) for aerospace and medical parts. These threads will match the strength of traditionally machined threads but with faster production times.
Yigu Technology’s Perspective on 3D Printing Threaded Holes
À la technologie Yigu, Nous voyons 3D printing threaded holes as a key enabler of fast, flexible manufacturing. Our FDM printers (Par exemple, Yigu Tech F4) come with pre-set “thread modes” that optimize slicer settings (hauteur de couche, remplissage) for perfect fits. We also offer a free CAD template library—with pre-designed M3-M10 threads—to save users design time. Pour les clients industriels, we’ve helped reduce thread failure rates by 60% using our high-precision nozzles (0.3MM) and tough PETG filament. 3D printed threaded holes aren’t just a convenience—they’re a way to turn prototypes into functional products faster than ever.
FAQ: Common Questions About 3D Printing Threaded Holes
- Q: Can I 3D print external threads (Par exemple, a bolt) as well as internal holes?
UN: Oui! The process is similar—design the external thread in CAD, utiliser 100% remplissage, and print at 40mm/s. Pour FDM, avoid external threads smaller than M3 (they’re too thin and break easily); resin printers can handle M2 external threads with high detail.
- Q: How many times can I assemble/disassemble a 3D printed threaded hole before it fails?
UN: Cela dépend du matériau: PLA threads last 10-15 cycles, PETG lasts 50-100 cycles, et résine (ABS-Like) dure 80-120 cycles. Pour un usage fréquent (Par exemple, un outil ouvert quotidiennement), utiliser un insert métallique (pressé dans le trou imprimé en 3D) pour prolonger la vie de 1,000+ cycles.
- Q: Ai-je besoin d'un outil de CAO spécial pour concevoir des trous filetés imprimés en 3D ??
UN: Non : la plupart des logiciels de CAO standard (Solide, Fusion 360) a des « générateurs de threads » intégrés qui vous permettent d'ajouter des fils de discussion en un seul clic. Pour les débutants, des outils gratuits comme Tinkercad proposent des formes de filetage prédéfinies que vous pouvez glisser-déposer dans votre modèle.