Quand il s’agit d’impression 3D, deux technologies se distinguent par leur accessibilité et leur polyvalence: ANS (Stéréolithographie) et FDM (Modélisation des dépôts fondus). SLA utilise la lumière pour durcir la résine liquide en pièces précises, tandis que le FDM fait fondre les filaments de plastique pour créer des couches. Les deux fonctionnent pour des prototypes, production en petites séries, et même des pièces d'utilisation finale, mais leurs atouts, frais, and best uses vary drastically. This guide breaks down their key differences, options matérielles, applications du monde réel, and how to pick the right one for your needs.
D'abord: What Are SLA and FDM? (Core Principles)
Before comparing them, let’s clarify how each technology works—their basic processes explain why they excel at different tasks.
ANS (Stéréolithographie): Light-Cured Resin
SLA is one of the oldest 3D printing technologies, relying on photopolymérisation (light reacting with resin to harden it). Here’s a simple breakdown:
- A vat holds liquid thermoset resin (sensitive to UV light).
- A UV laser (or LED array) traces the first layer of your part’s design onto the resin surface—curing it into a solid.
- The build platform lifts slightly, and a recoater spreads a thin layer of fresh resin over the cured layer.
- The laser repeats the process, couche par couche, until the part is complete.
- The part is removed from the vat, rinsed to remove excess resin, and cured again (post-durcissement) pour plus de force.
Caractéristique clé: Uses liquid resin, so it creates smooth, detailed parts with no visible layer lines.
FDM (Modélisation des dépôts fondus): Melted Filament
FDM is the most common 3D printing technology, especially for hobbyists and small businesses. It’s an extrusion-based processus:
- A spool of thermoplastic filament (par ex., PLA, ABS) feeds into a heated nozzle.
- The nozzle melts the filament (at 180–260°C, en fonction du matériau).
- The nozzle moves along a path defined by your 3D model, depositing the melted plastic onto the build plate.
- The plastic cools and hardens instantly, bonding to the layer below.
- The build plate lowers slightly, and the process repeats until the part is done.
Caractéristique clé: Uses solid filament, so it’s simpler to set up and more forgiving of minor design flaws.
SLA et. FDM: Key Comparison (Données & Détails)
The table below compares SLA and FDM across 8 critical factors—cost, précision, options matérielles, and more—using real-world data from manufacturers like Xometry and Prusa.
| Facteur | ANS (Résine) | FDM (Filament) |
| Coût (Desktop Printers) | \(200–)2,000 (resin costs \(20–)50 per liter) | \(150–)1,500 (filament costs \(20–)40 par kg) |
| Coût (Industrial Printers) | \(10,000–)100,000+ | \(5,000–)50,000+ |
| Épaisseur de couche | Ultra-thin (min. 0.02 mm) – great for detail | Thicker (0.05–0,3mm) – visible layer lines |
| Tolérance (Précision) | Serré (±0.1 mm for small parts) – ideal for fits | Looser (±0.2–0.3 mm) – better for non-critical parts |
| Finition de surface | Lisse, glass-like (pas de lignes de calque) | Rough (visible layer steps) – needs sanding for smoothness |
| Options matérielles | Limité (thermoset resins only) - rigide, flexible, or high-temp | Wide (thermoplastiques) – PLA, ABS, PETG, TPU, et plus |
| Build Size (Desktop) | Smaller (max 145×145×175 mm) | Larger (max 200×200×200 mm) |
| Build Size (Industriel) | Up to 2100×800×700 mm | Up to 914×610×914 mm |
| Post-traitement | Requis (rinse, cure, supprimer les supports) – 30–60 mins per part | Minimal (supprimer les supports, sand if needed) – 10–30 mins per part |
| Force | Fragile (most resins) – good for display, not load-bearing | Fort (especially ABS/PC) – works for functional parts |
Options matérielles: What You Can Print With SLA vs. FDM
The materials you use define your part’s strength, durabilité, and use case. SLA and FDM have distinct material libraries—here’s what you need to know.
SLA Resins: Precision Over Variety
SLA only uses résines thermodurcies (they harden permanently with light, no re-melting). While the range is smaller than FDM, resins are tailored for specific needs:
| Resin Type | Key Traits | Best Uses | Exemple |
| Standard Resin (par ex., 8360X, 8100) | Lisse, rigide, faible coût | Prototypes, display models, jewelry casts | A toy company’s prototype action figure |
| Résine de type ABS (par ex., 8220) | Flexible, résistant aux chocs | Pièces fonctionnelles (par ex., coques de téléphone, charnières) | A startup’s prototype camera grip |
| High-Temp Resin (par ex., Therm 1) | Withstands up to 150°C | Parts for high-heat environments (par ex., composants du moteur) | A mechanic’s prototype sensor bracket |
| Biocompatible Resin (par ex., eusilicone) | Safe for skin/body contact | Dispositifs médicaux (par ex., guides chirurgicaux, modèles dentaires) | A dentist’s custom crown prototype |
| Transparent Resin | Clair, glass-like finish | Lentilles, vitrines, light fixtures | A designer’s prototype lamp shade |
Note: SLA resins are limited in color—most come in gray, noir, blanc, or transparent. Coloring requires post-processing (peinture), which adds cost.
FDM Filaments: Variety Over Precision
FDM uses thermoplastiques (they melt when heated, harden when cooled)—a wide range of materials for almost any project:
| Filament Type | Key Traits | Best Uses | Cost per kg (USD) |
| PLA | Faible coût, facile à imprimer, biodégradable | Projets de loisirs, prototypes, display parts | \(20–)30 |
| ABS | Résistant aux chocs, résistant à la chaleur (jusqu'à 100°C) | Pièces fonctionnelles (par ex., engrenages, boîtiers électroniques) | \(25–)40 |
| PETG | Fort, flexible, résistant à l'eau | Pièces extérieures, conteneurs, composants mécaniques | \(30–)45 |
| TPU | Doux, élastique (comme du caoutchouc) | Poignées, joints, amortisseurs | \(40–)60 |
| Nylon PA12 | Haute résistance, résistant à l'usure | Load-bearing parts (par ex., cadres de drones, attaches) | \(50–)80 |
| PC (Polycarbonate) | Ultra-résistant, résistant à la chaleur (jusqu'à 130°C) | Safety gear, high-impact parts | \(60–)90 |
Pro Tip: FDM filaments come in dozens of colors—you can print colored parts directly, no painting needed. Par exemple, a brand can print custom-branded phone cases in their signature color without extra steps.
Real-World Use Cases: When to Choose SLA vs. FDM
Numbers tell part of the story—but real projects show how these technologies perform in practice. Voici 3 examples where the choice between SLA and FDM made a big difference.
Cas 1: Dental Crown Prototypes (SLA Wins)
A dental lab needed 20 custom crown prototypes (to test fit before making final ceramic crowns).
- FDM Option: PLA filaments are cheap, but FDM’s ±0.2 mm tolerance wasn’t tight enough—crowns didn’t fit patients’ teeth. Post-traitement (ponçage) took 30 mins per part, and the rough surface didn’t mimic real ceramic.
- SLA Option: Biocompatible resin (eusilicone) had ±0.1 mm tolerance—perfect fit. The smooth surface looked like real ceramic, et post-traitement (rinse + cure) took 15 mins per part.
Résultat: The lab chose SLA—prototypes fit 100% des malades, and the dentist could approve designs faster. Cost per prototype was \(8 (contre. \)5 pour FDM), but the time saved was worth it.
Cas 2: Drone Frame Prototypes (FDM Wins)
Une startup nécessaire 50 durable drone frame prototypes (to test flight performance).
- SLA Option: ABS-like resin was smooth, but the frames were brittle—20% broke during crash tests. Resin cost \(40 per liter, and each frame used 50ml (\)2 per frame).
- FDM Option: Nylon PA12 filament was strong and flexible—only 5% of frames broke. Filament cost \(60 par kg, and each frame used 20g (\)1.20 per frame).
Résultat: The startup chose FDM—saved \(40 total (\)0.80 per frame) and got more durable prototypes. The visible layer lines didn’t affect flight performance, so sanding wasn’t needed.
Cas 3: Custom Phone Cases (Depends on Needs)
A small brand wanted 100 coques de téléphone personnalisées (branded with their logo).
- ANS: Transparent resin made the logo pop, and the smooth surface felt premium. But resin cost \(5 per case, and painting the logo added \)1 per case (total $6).
- FDM: PETG filament in the brand’s signature blue was cheaper (\(3 per case), and the logo was printed directly (no painting). The surface was slightly rough, but adding a clear coat (\)0.50 per case) fixed it (total $3.50).
Résultat: The brand chose FDM for cost savings—customers didn’t mind the minor roughness, and the cases sold out faster than expected.
How to Choose Between SLA and FDM (Étape par étape)
Suivez-les 4 steps to pick the right technology—no guesswork needed.
Étape 1: Define Your Part’s Purpose
Demander: What will the part do?
- Display/prototype with fine details (par ex., bijoux, modèles dentaires): Choose SLA.
- Functional/load-bearing part (par ex., engrenages, cadres de drones): Choose FDM.
- Transparent/glass-like part (par ex., lentilles): Choose SLA.
- Colored part (no painting) (par ex., branded cases): Choose FDM.
Étape 2: Check Tolerance and Surface Needs
- Need tight tolerance (±0,1 mm) or smooth finish? ANS.
- Tolerance isn’t critical (±0,2 mm) or rough finish is okay? FDM.
Étape 3: Calculate Cost (Matériel + Post-traitement)
- Petits lots (1–10 pièces): FDM is cheaper (filament costs less than resin, no post-curing).
- Parts needing precision: SLA may cost more upfront but saves time on reworks.
Exemple: 10 lens prototypes cost \(50 with SLA (résine + post-durcissement) contre. \)30 with FDM—but FDM lenses were too rough to use, so SLA was the better value.
Étape 4: Consider Build Size
- Petites pièces (under 150mm): SLA or FDM works.
- Pièces plus grandes (over 200mm): FDM (desktop FDM printers have bigger build plates).
Yigu Technology’s Perspective on SLA vs. FDM
Chez Yigu Technologie, we match SLA and FDM to our clients’ goals, not just their budgets. For precise parts like medical prototypes or jewelry casts, SLA’s resin-based detail can’t be beaten. For functional parts—drone frames, poignées d'outils, or outdoor components—FDM’s filament strength and cost savings make sense. We also help with post-processing: sanding FDM parts for smoothness or post-curing SLA parts for extra durability. Our team provides side-by-side quotes and sample parts, so clients see the difference firsthand. For us, the best technology is the one that makes your part work, dernier, and fit your timeline.
FAQ About SLA vs. Impression 3D FDM
1. Is SLA resin toxic?
Most SLA resins are low-toxic (labeled “skin-safe”), but you should wear gloves when handling liquid resin—direct contact can cause irritation. Post-cured resin is safe (the light reaction neutralizes the chemicals). Avoid using SLA resin for food-contact parts (even biocompatible resins aren’t food-grade).
2. Can FDM print parts as strong as SLA?
Yes—FDM’s thermoplastics (comme l'ABS ou le PC) are stronger and more flexible than most SLA resins. SLA parts are great for detail but often brittle; FDM parts work better for load-bearing or impact-resistant uses (par ex., cadres de drones, engrenages).
3. Which is better for beginners: SLA or FDM?
FDM is better for beginners. It’s simpler to set up (no resin handling), more forgiving of design mistakes, and cheaper to fix (filament is less costly than resin). SLA requires more care (rinsing resin, post-durcissement) and has a steeper learning curve for perfect parts.
