Types of prototypes refer to the classification of physical models based on production processes, materiales, functions, and uses—each type serves unique purposes in product development, from verifying appearance to testing mass production feasibility. Choosing the correct prototype type is critical for reducing development costs, accelerating iteration cycles, and ensuring alignment with final product goals. This article systematically breaks down the core categories of prototypes, sus caracteristicas, applicable scenarios, and selection guidelines to help teams make informed decisions.
1. Classification by Production Process
Prototypes differ significantly in precision, costo, and lead time based on how they are manufactured. This classification is the most common starting point for prototype selection.
Tipo de prototipo | Características del núcleo | Step-by-Step Production Flow | Escenarios aplicables | Ventajas clave |
3D Printing Prototype | – Suitable for superficies curvas complejas y estructuras huecas (P.EJ., internal cavities of a smartphone case).- Materiales: Estampado, Abdominales, resina, nylon (supports personalized customization).- Costo: Bajo (≈ (5- )50 per unit for small batches).- Tiempo de entrega: Rápido (4–24 horas por parte). | 1. Export 3D CAD models to STL format.2. Optimize settings: Espesor de la capa (0.1–0.2 mm), relleno (10–30%).3. Imprimir con FDM (PLA/ABS) o SLA (resina).4. Remove supports and sand surface lines. | – Electrónica de consumo (earbud shells, smartwatch frames).- Juguetes (action figure prototypes with intricate details).- Artworks and medical models (anatomical replicas). | – No mold required (low upfront investment).- Ideal for rapid iteration (1–10 unidades).- Captura detalles finos (P.EJ., 0.5mm-thick texture patterns). |
CNC Machining Prototype | – Ultra alta precisión (tolerancia: ± 0.05 mm) y acabado superficial liso (Ra 1.6–3.2μm).- Materiales: Mostly metals (aleación de aluminio, cobre) o plásticos rígidos (Pom, acrílico).- Costo: Medium to high (≈ (20- )200 por unidad).- Tiempo de entrega: 1–3 days per part. | 1. Convert 3D models to G-code (using Mastercam or UG).2. Secure material blocks (metal/plastic) a la bancada de la máquina CNC.3. Machine with optimized toolpaths (profundidad de corte: 0.1–0.5 mm por pase).4. Sand or polish to remove tool marks. | – Partes mecánicas (engranaje, shafts for industrial equipment).- Autopartes (aluminum alloy brackets, carcasa del sensor).- Electrónica de alta gama (precision connectors for laptops). | – Durable for functional testing (P.EJ., load-bearing of a drone frame).- Matches mass production material properties (critical for performance validation). |
Silicone Duplicate Prototype | – Based on a moho maestro (3Impreso en D o mecanizado CNC) for replication.- Materiales: Resina PU, epoxy, soft glue (TPU) (simulates rubber or plastic textures).- Capacidad de lote: Arriba a 50 unidades (cost-effective for small-batch trials).- Tiempo de entrega: 3–5 días (including mold making). | 1. Make a high-quality master prototype (P.EJ., CNC-machined acrylic).2. Pour liquid silicone (viscosity 500–2000 cP) around the master to create a mold.3. Cure the mold at 25–80°C for 4–24 hours.4. Inject PU resin/epoxy into the mold and demold after curing. | – Soft parts (keychains, TPU mobile phone cases).- Small-batch trial production (P.EJ., 20 units of a toy car shell).- Parts requiring uniform texture (P.EJ., rubber grips for tools). | – Bajo costo por unidad (≈ (3- )15 per copy).- Conserva los detalles maestros (no loss of texture or dimension). |
Handmade Prototype | – High flexibility for artistic or special materials (madera, arcilla, oil clay).- Relies on technician experience (skill-dependent quality).- Costo: Bajo (no equipment fees, but labor-intensive).- Tiempo de entrega: Lento (1–7 days per part). | 1. Select materials (P.EJ., clay for sculpting, wood for carving).2. Shape manually with tools (carving knives, papel de lija, moldes).3. Finish with paint or polish (si es necesario). | – Sculptures and film/television props (P.EJ., a fantasy movie’s wooden weapon).- Modelos conceptuales (early-stage design sketches turned physical).- Artisanal products (hand-carved wooden toys). | – No specialized equipment required.- Easy to modify on the spot (P.EJ., adjusting a clay model’s shape). |
2. Classification by Material
The material of a prototype directly impacts its strength, apariencia, and functionality—this classification is critical for matching prototype performance to final product requirements.
Tipo de prototipo | Material Examples | Core Features | Escenarios aplicables | Limitaciones |
Plastic Prototype | Abdominales, ordenador personal, Pom, acrílico, Estampado | – Ligero (densidad: 0.9–1.2 g/cm³) and easy to process.- Supports surface treatments (fumigación, electro Excripción, cribado de seda).- Costo: Bajo a medio (≈ (5- )50 por unidad). | – Most consumer products (plastic toy shells, PC laptop housings).- Parts requiring corrosion resistance (vitrinas de acrílico).- Non-load-bearing components (ABS phone stand). | – Lower strength than metal (not suitable for heavy-load testing).- Algunos plásticos (Estampado) deform at high temperatures (>60° C). |
Metal Prototype | Aleación de aluminio (6061, 7075), acero inoxidable (304, 316), cobre | – Alta fuerza (aluminum alloy tensile strength: 200–300 MPA) and good texture.- Excellent heat and corrosion resistance (stainless steel for outdoor parts).- Costo: Alto (≈ (50- )300 por unidad). | – Componentes de carga (automotive suspension brackets).- Precision equipment (copper connectors for electronics).- Piezas de maquinaria industrial (stainless steel gears). | – Pesado (densidad: 2.7–8.9 g/cm³) — not ideal for portable products.- Long production time (CNC machining requires complex toolpaths). |
Soft Rubber Prototype | TPU, silicona, PVC suave | – Flexible (Costa una dureza: 20–50) and non-slip.- Buena elasticidad (recovers shape after compression).- Costo: Medio (≈ (10- )60 por unidad). | – Empuñadura (manijas de herramientas, bike handlebars).- Sealing rings (waterproof gaskets for smartwatches).- Soft toy parts (silicone doll limbs, TPU toy wheels). | – Low rigidity — not suitable for structural components.- May degrade over time (exposed to sunlight or oil). |
Resin Prototype | Resina epoxídica, resina de poliuretano | – Transparent or translucent (transmitancia de luz: 80–90% for clear resin).- Superficie lisa (no post-processing needed for SLA-printed resin).- Costo: Medio (≈ (15- )80 por unidad). | – Imitation glass/crystal products (resin lamp shades, vitrina).- Modelos médicos (transparent anatomical replicas).- High-gloss decorative parts (resin toy eyes, prototipos de joyería). | – Frágil (prone to cracking under impact).- Some resins are not heat-resistant (>80°C may warp). |
3. Classification by Function
Prototypes are designed to validate specific aspects of a product—this classification ensures alignment with development goals (P.EJ., appearance vs. funcionalidad).
Tipo de prototipo | Core Objective | Características clave | Escenarios aplicables | Validation Methods |
Appearance Prototype | Verificar forma, color, textura, and assembly effect (no focus on internal structure). | – Focus on surface treatment (fumigación, electro Excripción, ardor de arena).- Internal structure can be simplified (P.EJ., hollowed-out to reduce cost).- Low precision for non-visible dimensions (tolerancia: ± 0.5 mm). | – Electrónica de consumo (smartphone back covers, conchas de tableta).- Piezas exteriores automotrices (headlight casings, bumper prototypes).- Home appliance panels (refrigerator door fronts, washing machine control panels). | – Inspección visual (check color uniformity, texture consistency).- Stakeholder feedback (P.EJ., “Does the texture match brand guidelines?"). |
Structural Prototype | Prueba assembly logic, mobility, y estabilidad estructural (P.EJ., folding, rotating). | – Exact dimensions required (tolerancia: ± 0.1 mm) to simulate mass production. | – Robots (joint mobility, arm folding structure). | – Assembly testing (check if parts fit without force, no interference). |
– May include simple mechanical structures (bisagras, hebillas) but no electronic components. | – Dispositivos médicos (adjustable wheelchair armrests, manijas de herramientas quirúrgicas).- Household products (folding chairs, detachable storage boxes). | – Mobility testing (P.EJ., fold a chair 100 times to check for looseness).- Load testing (apply weight to verify structural strength). | ||
Prototipo funcional | Validate the core functions of the product (circuitry, hydraulics, optics). | – Integrated with electronic modules, sensores, or mechanical systems.- Close to the finished product form (internal structure and external appearance are complete).- High precision for functional components (tolerancia: ± 0.05 mm). | – Intelligent hardware (smart speakers with voice recognition, wearable fitness trackers).- Equipo industrial (hydraulic valve prototypes, optical lens holders).- Scientific research instruments (sensor prototypes for environmental monitoring). | – Prueba funcional (P.EJ., “Does the sensor detect temperature accurately?").- Prueba ambiental (simulate high/low temperatures, humidity to check function stability). |
4. Classification by Use
This classification focuses on the prototype’s role in the product development lifecycle—from early design to pre-mass production.
Tipo de prototipo | Función central | Características clave | Applicable Stages |
Design Verification Prototype | Confirm appearance design, size ratio, and human-computer interaction. | – Producción rápida (3D printing or handmade).- Bajo costo (simplified structure).- Easy to modify (supports iterative design). | Early design stage (after 2D drawings, before structural finalization). |
Assembly Verification Prototype | Prueba fit between parts, screw hole position, and buckle structure. | – Parts are split to simulate mass production assembly process.- No need for surface treatment (focus on fit, not appearance). | Mid-development stage (after structural design, before functional testing). |
Mass Production Test Prototype | Validar production process feasibility (moldura de inyección, estampado) and material stability. | – Uses the same materials and processes as mass production.- Alta precisión (matches mass production standards).- Batch production possible (10–50 unidades) to test process consistency. | Late development stage (before opening mass production molds). |
5. Special Types of Prototypes
These prototypes are designed for unique scenarios (P.EJ., transparencia, alta resistencia a la temperatura) and address niche product requirements.
Tipo de prototipo | Materiales | Core Features | Escenarios aplicables |
Transparent Prototype | Acrílico, ordenador personal, clear resin | – High light transmittance (acrílico: 92%, ordenador personal: 89%).- Supports polishing to enhance clarity (no cloudiness). | – Lamps (acrylic lamp shades, resin light guides).- Display frames (transparent phone cases, museum exhibit holders).- Dispositivos médicos (transparent IV fluid containers, manijas de instrumentos quirúrgicos). |
High-Temperature Resistant Prototype | Pensilvania (Nylon), PPA, metal (acero inoxidable, aleación de titanio) | – Soporta altas temperaturas (Pensilvania: 150–200 ° C, metal: 500° C+).- No deformation or performance loss in high-heat environments. | – Piezas de motor automotriz (sartenes, cubiertas de válvula).- Industrial ovens (high-temperature sensor housings).- Componentes aeroespaciales (small satellite parts). |
Simulation Prototype | Silicona, foam material, goma suave | – Simulates soft touch (P.EJ., human skin, foam cushions).- Flexible and compressible (mimics real-world tactile feedback). | – Juguetes (silicone doll skin, foam puzzle mats).- Modelos médicos (silicone human organ replicas for training).- Productos de consumo (foam ear tips for headphones, soft rubber grips). |
6. How to Choose the Right Type of Prototype?
Use this step-by-step guide to select the optimal prototype based on your goals, presupuesto, y línea de tiempo.
6.1 By Development Goal
Meta | Recommended Prototype Type | Ejemplo |
Appearance Validation | 3D printing prototype (resina) + spraying/electroplating. | A resin smartphone back cover prototype sprayed with matte black paint to test color. |
Structural Stability Testing | Prototipo de mecanizado CNC (metal/plastic) + prueba de ensamblaje. | A CNC-machined aluminum alloy drone frame to test load-bearing capacity. |
Producción de prueba de lotes pequeños | Silicone duplicate prototype (Resina PU). | 30 PU resin toy car shells replicated from a 3D-printed master. |
6.2 By Budget
Budget Range | Recommended Prototype Type | Razón |
Bajo (\(5- )50) | 3D printing prototype (PLA/ABS) or handmade prototype. | No mold fees and low material costs. |
Medio (\(50- )200) | Prototipo de mecanizado CNC (plástico) or silicone duplicate prototype. | Balances precision and cost for functional testing. |
Alto ($200+) | Prototipo de mecanizado CNC (metal) or mass production test prototype. | Ensures compatibility with mass production processes (P.EJ., moldura de inyección). |
6.3 By Timeline
Timeline | Recommended Prototype Type | Tiempo de entrega |
Urgent (1–2 días) | 3D printing prototype (FDM/SLA). | 4–24 horas por parte. |
Normal (3–7 días) | Silicone duplicate prototype or CNC machining prototype (plástico). | 3–5 días (silicona) or 1–3 days (CNC plastic). |
No Rush (1–2 semanas) | Prototipo de mecanizado CNC (metal) or mass production test prototype. | 5–10 días (CNC metal) or 7–14 days (mass production test). |
La perspectiva de la tecnología de Yigu
En la tecnología yigu, we see choosing the right type of prototype as a “cost-saving catalyst” for product development. Too many clients waste resources on over-precise prototypes (P.EJ., CNC metal for appearance testing) or underperform ones (P.EJ., 3D-printed PLA for high-temperature parts). Nuestro enfoque: We first clarify the client’s core goal—Is it appearance, función, or mass production feasibility? Por ejemplo, a startup needing 5 action figure prototypes in 3 days gets 3D-printed resin prototypes (rápido, detallado), while an auto parts maker validating engine components gets high-temperature resistant PA prototypes. We also prioritize material-process matching—e.g., using silicone duplicates for soft parts to avoid CNC’s rigidity. By aligning prototype type with goals, we help clients cut rework costs by 40% and speed up development by 30%.
Preguntas frecuentes
- Can I use a 3D printing prototype for mass production feasibility testing?
No—3D printing prototypes use different processes (layer-by-layer deposition) than mass production (moldura de inyección, estampado), so they can’t validate mold compatibility or process stability. For mass production testing, use a prototype made with the same process as final production (P.EJ., injection-molded plastic prototypes).
- What’s the best prototype type for a transparent product (P.EJ., a clear lamp shade)?
Choose a transparent prototype made from acrylic, ordenador personal, or clear resin. For early appearance testing, use 3D-printed clear resin (rápido, bajo costo). Para pruebas funcionales (P.EJ., transmitancia de luz), use CNC-machined acrylic (higher precision and better material stability).
- Is a handmade prototype suitable for functional testing?
Rarely—handmade prototypes rely on technician skill, so their dimensions and structure are inconsistent (tolerancia: ±1–5mm). They are best for early concept verification (P.EJ., a clay model of a toy) but not for functional tests (P.EJ., checking if a hinge rotates smoothly). Para pruebas funcionales, use 3D-printed or CNC-machined prototypes.