What Is Silicone Mold Injection Molding and Its Key Essentials?

Mecanizado de poliamida PA CNC

Silicone mold injection molding is an advanced manufacturing technology that uses caucho de silicona liquida (LSR) as raw material, injecting it into high-precision molds under controlled temperature and pressure to produce high-quality silicone products. Unlike traditional manual mold making, it excels in mass production, high dimensional accuracy, and stable product performance—making it a core process in medical, electrónico, e industrias automotrizas. But what are its core principles? How to control key processes? And how to address its unique challenges? This article answers these questions in detail.

1. Principios centrales & Características del material

To understand silicone mold injection molding, we first break down its working mechanism and the properties of its key raw material—liquid silicone.

A. Principio de trabajo central

The process follows a simple but precise 因果链 (cause-and-effect chain):

  1. Derretimiento de materia prima: silicona liquida (two-component: main agent + agente de curado) is fed into the injection machine’s barrel, where it is heated to a flowable state (no melting—silicone is thermoset, so this step softens it for injection).
  2. High-Pressure Injection: The injection machine pushes the softened silicone into a high-precision mold cavity (tolerance ±0.01mm) at a controlled speed (5–20mm/s) y presión (10–50MPa).
  3. Curación & Vulcanization: El molde se calienta (120–180 ° C) to trigger a chemical reaction in the silicone, turning it from liquid to elastic solid. Curing time depends on product thickness—e.g., 1mm-thick parts take 10–15 seconds; 10mm-thick parts take 60–90 seconds.
  4. Fundamento & Refinamiento: Una vez curado, El molde se abre, and the product is ejected. Postprocesamiento (desacuerdo, guarnición) elimina el exceso de material, resulting in a finished part.

B. Material clave: Caucho de silicona líquida (LSR)

LSR’s unique properties determine the process’s advantages. The table below highlights its critical characteristics:

Material CharacteristicSpecific PerformanceRole in Injection Molding
FluidityLow viscosity (5,000–20,000 cP)Flows into micro-details of the mold (P.EJ., 0.1mm-thick sealing lips)
Resistencia al calorWithstands -60°C to +250°C (short-term +300°C)Suitable for high-temperature applications (P.EJ., automotive engine gaskets)
Estabilidad químicaResiste ácidos, alcalino, aceites, y solventesIdeal para dispositivos médicos (sterilized with alcohol) and electronic parts (resists coolants)
ElasticidadAlargamiento en el descanso >500%; Shore hardness 20–80AEnsures products (P.EJ., phone buttons, Juntas tóricas) maintain flexibility after repeated use
BiocompatibilidadMedical-grade LSR meets FDA 21 CFR §177.2600Safe for skin-contact products (P.EJ., baby pacifiers, medical catheters)

2. Step-by-Step Production Process

Silicone mold injection molding follows a standardized, linear workflow—each step requires strict parameter control to avoid defects.

Paso 1: Preparación de materia prima & Pruebas

  • Component Mixing: Blend LSR main agent and curing agent in a precise ratio (común 1:1 o 10:1) using an automated mixer. For colored products, add 1–3% non-toxic pigments to the mixture.
  • Inspección de calidad: Conduct 3 key tests:
  1. Viscosity Test: Ensure viscosity is 5,000–15,000 cP (too high = poor flow; too low = leakage).
  2. Curing Test: Cure a small sample at 160°C for 30 seconds—check for full solidification (no sticky surface).
  3. Impurity Check: Filter the mixture through a 5μm sieve to remove particles (prevents mold clogging).

Paso 2: Diseño de moldes & Fabricación

Molds are theheartof the process—their precision directly impacts product quality.

  • Consideraciones de diseño:
  • Ubicación de la puerta: Colocar puertas (injection inlets) at thick sections to avoid air traps. Para piezas pequeñas (P.EJ., conectores electrónicos), utilizar puertas precisas (0.5–1 mm de diámetro).
  • Sistema de enfriamiento: Add water channels around the cavity to control mold temperature (±2°C tolerance)—prevents uneven curing.
  • Tratamiento superficial: Apply chrome plating (5–10μm thickness) or nitriding to the mold surface. This improves wear resistance (extends mold life to 100,000+ ciclos) and release performance (reduces sticking).
  • Manufacturing Equipment: Use CNC machining centers (accuracy ±0.005mm) to mill the mold cavity. Para formas complejas (P.EJ., Componentes del dispositivo médico), add EDM (Mecanizado de descarga eléctrica) for micro-details.

Paso 3: Injection Molding Parameter Setup

Key parameters must be optimized—incorrect settings cause defects like bubbles or shrinkage. The table below lists critical parameters and their ideal ranges:

ParámetroRango idealImpacto de la configuración incorrecta
Temperatura del barril40–60 ° C (zone 1: 40° C; zone 2: 50° C; zone 3: 60° C)Demasiado alto (>70° C) = premature curing (blocks the barrel); demasiado bajo (<30° C) = poor flow
Inyección15–30MPaDemasiado alto (>40MPA) = mold deformation; demasiado bajo (<10MPA) = incomplete cavity filling
Velocidad de inyección8–15mm/s (staged: slow start → fast middle → slow end)demasiado rapido (>20mm/s) = air trapping (burbujas); demasiado lento (<5mm/s) = cold slugs (uneven texture)
Temperatura del molde140–160 ° CDemasiado alto (>180° C) = over-curing (piezas quebradizas); demasiado bajo (<120° C) = under-curing (sticky surface)
Tiempo de curado10–120 segundos (1 second per mm of thickness)Too short = under-curing; too long = reduced production efficiency

Paso 4: Curación, Fundamento & Postprocesamiento

  • Curación: The mold remains closed for the set time—use a mold temperature controller to maintain stable heat.
  • Fundamento: Use robotic ejectors (para la producción en masa) or manual tools (para lotes pequeños) Para eliminar las piezas. Apply a thin layer of silicone release agent if sticking occurs (avoid excess—causes surface defects).
  • Postprocesamiento:
  1. Desacuerdo: Trim gate residues with a laser cutter (para piezas de precisión) or sharp scissors (para piezas no críticas).
  2. Limpieza: Wash parts with deionized water to remove release agent residue.
  3. Secondary Vulcanization (Opcional): Para piezas de alta temperatura (P.EJ., sellos automotrices), bake at 200°C for 2–4 hours to improve heat resistance.

3. Ventajas & Desafíos: Un análisis comparativo

Silicone mold injection molding has clear strengths compared to traditional manufacturing methods (P.EJ., moldura de compresión, manual casting). It also faces unique challenges—understanding both helps users decide if it’s the right process.

A. Advantages Over Traditional Methods

VentajaSilicone Mold Injection MoldingMoldura de compresiónManual Casting
Eficiencia de producciónAlto (30–60 parts per minute for small components)Medio (5–10 parts per minute)Bajo (1–2 parts per hour)
Precisión dimensional± 0.01 mm (ideal for precision parts)± 0.1 mm (limited by mold pressure)± 0.5 mm (human error)
Product Consistency99.5% uniformity (proceso automatizado)90% uniformity (Depende de la habilidad del operador)70% uniformity (high variability)
Manejo de complejidadExcelente (can produce parts with undercuts, microholes)Pobre (requires split molds for complexity)Muy pobre (limited to simple shapes)
Desechos materialesBajo (<5% scrap—excess can be recycled)Medio (10–15% scrap)Alto (20–30% scrap)

B. Desafíos clave & Estrategias de mitigación

DesafíoCausa principalMitigation Strategy
High Initial InvestmentMold manufacturing (Mecanizado CNC + tratamiento superficial) costo \(10,000- )100,000; injection machines cost \(50,000- )200,000– Para lotes pequeños: Use shared molds (reduces cost by 50%).- Para proyectos a largo plazo: Choose high-wear-resistant mold materials (P.EJ., Acero H13) to extend life (100,000+ ciclos)
Mold CloggingImpurities in LSR or low fluidityFilter LSR through 5μm sieves before injection.- Preheat LSR to 50°C (improves fluidity)
Bubble FormationAir trapped during injection or incomplete ventingAdd vent grooves (0.01–0.02mm depth) to the mold.- Use vacuum-assisted injection (removes air from the cavity)
Shrinkage DefectsUneven cooling or over-curingOptimize mold cooling channels (ensure uniform temperature).- Add 1–2% shrinkage allowance to the mold design

4. Application Fields: Donde brilla

Silicone mold injection molding is widely used in industries that demand precision, durabilidad, y biocompatibilidad. The table below highlights key applications with specific examples:

IndustriaTypical ProductsLSR GradeKey Process Requirements
Dispositivos médicosConsejos de catéter, surgical instrument gaskets, baby pacifiersMedical-grade (FDA 21 CFR §177.2600)Cleanroom production (Clase 100,000).- No release agent (avoids contamination).- Biocompatibility testing post-production
ElectrónicaPhone buttons, LED lamp seals, sensor O-ringsDe grado industrial (high insulation)– Alta precisión (±0.005mm for button travel).- Low volatility (no VOCs to damage electronics)
AutomotorEngine gaskets, fuel system seals, componentes del tableroHigh-temperature grade (resists 250°C)– Resistencia química (a los aceites, refrigerantes).- Vibration resistance (alargamiento >500%)
Bienes de consumoSilicone kitchen utensils (spatulas), waterproof watch bandsFood-grade (Aprobado por la FDA)Non-toxic pigments.- Superficie lisa (Real academia de bellas artes <0.8μm) Para facilitar la limpieza

5. Yigu Technology’s Perspective on Silicone Mold Injection Molding

En la tecnología yigu, we see silicone mold injection molding as a cornerstone of high-precision manufacturing—especially for industries like medical and automotive. Para clientes médicos, our custom injection molds (tolerancia ± 0.008 mm) and medical-grade LSR have enabled the production of 100,000+ catheter tips with 0% biocompatibility failures. For automotive partners, our high-temperature LSR (resists 280°C) and optimized cooling systems reduce engine gasket shrinkage to <0.5%, improving product lifespan by 30%.

We’re addressing key challenges by: 1) Developing low-cost mold materials (P.EJ., coated aluminum) that cut mold costs by 40% mientras mantiene 50,000+ ciclos; 2) Integrating AI into parameter control (automatically adjusts temperature/pressure to reduce defects by 25%). Our goal is to make this technology accessible to mid-sized businesses—balancing precision with affordability.

Preguntas frecuentes

  1. ¿Cuál es la cantidad de pedido mínimo? (Moq) for silicone mold injection molding?

MOQ depends on mold cost: Para piezas estándar (P.EJ., Juntas tóricas), MOQ is 10,000–50,000 units (Para compensar los costos de moho). Para piezas personalizadas, we offer shared molds with MOQ as low as 1,000 unidades (ideal for small-batch testing).

  1. Can silicone mold injection molding produce transparent silicone products?

Yes—use high-purity LSR (impurity content <0.1%) and polished molds (Real academia de bellas artes <0.02μm). We’ve produced transparent medical connectors with 90% transmitancia de luz, meeting optical requirements for device visualization.

  1. How long does it take to develop a custom silicone mold and start production?

Mold development takes 4–6 weeks (Mecanizado CNC + pruebas). After mold approval, production can start within 1 semana. Para proyectos urgentes (P.EJ., medical device emergencies), we offer expedited mold development (2–3 semanas) with priority production.

Índice
Desplácese hasta arriba