En la fabricación moderna, desde carcasas de transmisiones automotrices hasta carcasas de productos electrónicos de consumo, el processes of die casting determine part quality, eficiencia de producción, y rentabilidad. These processes aren’t a one-size-fits-all solution; they range from basic high-pressure methods to advanced semi-solid technologies, each tailored to specific material needs (zinc, aluminio, magnesio) y requisitos de aplicación (producción en masa, alta precisión). This article breaks down core process categories, technical principles, escenarios de aplicación, and selection strategies, helping you match the right die casting process to your production goals.
1. What Are the Basic Processes of Die Casting?
Basic die casting processes form the foundation of industrial production, focusing on high efficiency and cost-effectiveness. Casting de alta presión (HPDC) is the most widely used, with two sub-types based on metal melting points:
1.1 Casting de alta presión (HPDC): The Industry Mainstream
HPDC injects molten metal into closed steel molds at high pressure (30-120MPA) y velocidad (0.5-120EM), enabling rapid solidification (0.05-0.5 artículos de segunda clase) Para piezas producidas en masa. It’s divided into two variants:
Process Variant | Principio fundamental | Parámetros clave | Suitable Metals | Ventajas | Limitaciones | Aplicaciones típicas |
Casting de la cámara fría | Molten metal is poured into an independent “cold chamber” (not in direct contact with the furnace) antes de la inyección; The chamber is cooled to prevent metal solidification during waiting | – Inyección: 50-120MPA- Temperatura del molde: 150-250° C- Tiempo de ciclo: 30-120 segundos/parte | High-melting-point metals: Aluminio (A380, A356), magnesio (AZ91D) | – Handles large/complex parts (up to 50kg)- Avoids mold overheating (extends mold life to 100,000+ ciclos)- Suitable for high-strength parts | – Longer cycle time vs. hot chamber- Higher equipment cost | NEV battery brackets, automotive engine housings, piezas estructurales aeroespaciales |
Casting de died de cámara caliente | The injection system (plunger, boquilla) is fully immersed in a molten metal furnace; Metal is sucked into the chamber directly for fast injection | – Inyección: 30-80MPA- Temperatura del molde: 100-180° C- Tiempo de ciclo: 10-30 segundos/parte | Low-melting-point metals: Zinc (Zamak5, ZA27), dirigir, estaño | – Ultra-fast production (ideal para lotes masivos >100,000 regiones)- Operación sencilla (bajo costo laboral)- Bajo consumo de energía (no es necesario recalentar el metal) | – Limitado a piezas pequeñas (<5kilos)- Moho propenso a la corrosión. (vida más corta: 50,000-80,000 ciclos) | juguetes de aleación de zinc, carcasas de sensores electrónicos, adorno decorativo (P.EJ., manijas de las puertas) |
2. What Are the Improved Die Casting Processes?
Los procesos mejorados abordan fallas en HPDC básico (P.EJ., porosidad, baja precisión) optimizando el diseño del molde, gas control, o métodos de inyección. Son fundamentales para piezas de alta calidad, como componentes que soportan presión.:
Proceso mejorado | Innovación clave | Detalles técnicos | Problema resuelto | Aplicaciones ideales |
Fundición a presión no porosa | Agrega un sistema de vacío para eliminar el aire de la cavidad del molde antes de la inyección. | – Vacuum degree: -0.095 a -0.098MPA- Gas removal rate: >95%- Works with cold/hot chamber systems | Reduce la porosidad mediante 80-90% (a major cause of leakage in basic HPDC); Elimina los vacíos internos | Zinc alloy hydraulic valve bodies, aluminum alloy fuel injector nozzles |
Direct Injection Die Casting | Integrates the furnace with the injection chamber (no separate pouring step); Uses a plunger to push metal directly into the mold | – Metal utilization rate: >98% (VS. 85-90% for basic HPDC)- No sprue waste (cuts material cost by 10-15%) | Reduce el desperdicio de material; Shortens cycle time by 15-20% | High-volume aluminum parts (P.EJ., consumer electronics midframes), herrajes de aleación de zinc |
Precisión & Dense Die Casting | Invented by General Dynamics; Uses ultra-precise mold machining (cavity tolerance: ± 0.01 mm) + high-specific-pressure compensation (120-150MPA) | – Aspereza de la superficie: Ra ≤0.8μm (no post-polishing needed)- Precisión dimensional: IT7-IT8 (better than basic HPDC’s IT8-IT10)- Densidad de pieza: ≥99.5% | Improves surface quality and precision; Enables parts to meet strict assembly requirements | Aerospace aluminum components (P.EJ., corchetes), tripas de dispositivos médicos (P.EJ., manijas de herramientas quirúrgicas) |
3. What Are the Special Die Casting Processes?
Special processes cater to niche needs: integración multimaterial, ultra-fast production, or semi-solid forming. They expand die casting’s application scope beyond traditional metals and shapes:
3.1 Multi-Color/Multi-Material Die Casting
- Definición: Completes die casting of two or more colors/materials in one mold cycle (P.EJ., aleación de zinc + aleación de aluminio, or different colored zinc alloys).
- Cómo funciona:
- Primero, inject the base material (P.EJ., silver zinc alloy) into the first cavity;
- Rotate the mold or move the core to align with the second cavity;
- Inyectar el segundo material (P.EJ., black zinc alloy) to bond with the base.
- Ventajas: Elimina el post-ensamblaje (cuts labor cost by 30-40%); Ensures tight material bonding (Sin huecos).
- Aplicaciones: Piezas interiores automotrices (P.EJ., two-tone dashboard frames), Electrónica de consumo (P.EJ., multi-color phone cases).
3.2 High-Speed Die Casting
- Definición: Uses a high-speed injection system (up to 200m/s) and advanced mold cooling (water channels every 5-10mm) to achieve ultra-fast filling and solidification.
- Parámetros clave:
- tiempo de llenado: <0.05 artículos de segunda clase (VS. 0.05-0.2 seconds for basic HPDC);
- Mold cooling rate: 50-100° C/S (accelerates solidification);
- Precisión: Part tolerance ±0.02mm.
- Ventajas: Produces complex thin-walled parts (minimum wall thickness: 0.3-0.5milímetros); Maintains dimensional stability (Sin deformación).
- Aplicaciones: Thin aluminum alloy heat sinks (for 5G base stations), micro-zinc parts (P.EJ., relojes de reloj).
3.3 Fundición a presión semisólida
- Definición: Heats metal to a “solid-liquid coexistence” state (40-60% fase sólida, 60-40% liquid phase) instead of fully molten; Uses laminar flow filling (0.1-0.5EM) to avoid turbulence.
- Technical Benefits:
- Microestructura: Granos esféricos finos (5-50μm) VS. coarse dendrites in basic HPDC;
- Propiedades mecánicas: Resistencia a la tracción +20-30%, alargamiento +50-80%;
- Vida del molde: Extended by 30-50% (lower thermal shock from semi-solid metal).
- Aplicaciones: High-performance aluminum parts (P.EJ., Carcasas de motores NEV), magnesium alloy aerospace components (P.EJ., small landing gear brackets).
4. How to Choose the Right Die Casting Process?
Process selection depends on 5 core factors—ignoring any leads to poor quality or high costs. Below is a step-by-step decision guide:
Paso 1: Match Process to Material
- Aluminum/Magnesium (Punto de fusión alto): Cold chamber HPDC (básico), non-porous die casting (improved), semi-solid die casting (special).
- Zinc (Low Melting Point): Hot chamber HPDC (básico), non-porous die casting (improved), multi-color die casting (special).
Paso 2: Consider Part Size & Complejidad
Part Characteristic | Recommended Process | Razón |
Pequeño (<5kilos) + Simple Shape | Hot chamber HPDC | Fast cycle time; Bajo costo |
Grande (>10kilos) + Complex Structure | Cold chamber HPDC + precision mold | Handles size/complexity; Ensures accuracy |
Thin-Walled (<1milímetros) + Alta precisión | High-speed die casting | Ultra-fast filling avoids incomplete forming |
Paso 3: Align with Production Volume
- Low Volume (<10,000 regiones): Basic HPDC (low mold cost; no need for advanced equipment).
- Medium Volume (10,000-100,000 regiones): Improved processes (P.EJ., non-porous die casting) to balance quality and cost.
- Volumen alto (>100,000 parts): Hot chamber HPDC (zinc) or direct injection die casting (aluminio) for maximum efficiency.
Paso 4: Prioritize Quality Requirements
- Pressure-Bearing Parts (No Leakage): Non-porous die casting (baja porosidad).
- High-Precision Assembly (Tolerance ±0.02mm): Precisión & dense die casting.
- Alta fuerza (Tensile Strength >300MPa): Fundición a presión semisólida.
5. Yigu Technology’s Perspective on Processes of Die Casting
En la tecnología yigu, Vemos el processes of die casting as a “production strategy toolbox”—the right choice depends on balancing quality, costo, y volumen. Nuestros datos muestran 70% of die casting failures come from process-material mismatches (P.EJ., using hot chamber HPDC for aluminum parts).
We recommend a “demand-driven” approach: For NEV battery brackets (grande, high-strength aluminum parts), we use cold chamber HPDC + non-porous technology (asegura la estanqueidad del aire); For zinc alloy sensor housings (pequeño, de alto volumen), we opt for hot chamber HPDC (cuts cycle time to 15 segundos/parte). We also integrate AI to monitor process parameters (P.EJ., presión de inyección, temperatura del molde) en tiempo real, reducir las tasas de defectos a <1%. Mirando hacia adelante, semi-solid and multi-material processes will be key to meeting lightweight and integration needs in automotive and electronics.
6. Preguntas frecuentes: Common Questions About Processes of Die Casting
Q1: Can I use non-porous die casting for both aluminum and zinc alloys?
Sí. Non-porous die casting works with both cold (aluminio) and hot (zinc) chamber systems. Para aluminio, it reduces porosity to <0.5% (critical for pressure-bearing parts like hydraulic valves); For zinc, it eliminates internal voids (improving corrosion resistance for outdoor hardware). The only adjustment needed is mold temperature (150-250°C for aluminum, 100-180°C for zinc).
Q2: What’s the difference between precision & dense die casting and basic HPDC in terms of cost?
Precisión & dense die casting has higher upfront costs (costo de molde: 2-3x basic HPDC, due to ultra-precise machining) but lower long-term costs. Por ejemplo, a zinc alloy medical device casing: Basic HPDC requires \(5,000 moho + \)0.5/part post-polishing; Precisión & dense die casting uses \(12,000 mold but no post-processing. Para lotes >100,000 regiones, precision die casting is cheaper (total cost: \)62,000 VS. $55,000 for basic HPDC).
Q3: Is high-speed die casting suitable for thick-walled parts (>5milímetros)?
No. High-speed die casting is designed for thin-walled parts: Its fast cooling rate (50-100° C/S) causes thick-walled areas to solidify unevenly, leading to shrinkage cavities. Para piezas de paredes gruesas (P.EJ., Bloques de motor automotriz), use cold chamber HPDC with a high-specific-pressure compensation system (120-150MPA) to ensure uniform solidification and avoid defects.