La fundición a presión de aluminio se utiliza ampliamente en la industria automotriz., electrónica, y aeroespacial debido a su peso ligero, alta resistencia, y rentabilidad. Sin embargo, El proceso implica múltiples vínculos complejos, desde la selección del material hasta el postratamiento, y cualquier descuido puede provocar defectos como la porosidad., grietas, o subestimación. Para garantizar una producción estable y piezas de aluminio de alta calidad., manufacturers must master critical precautions throughout the workflow. This article systematically breaks down key considerations in each stage, providing actionable guidance to avoid common pitfalls.
1. Selección de materiales: Match Alloy to Part Function
Choosing the right aluminum alloy is the foundation of successful die casting. Different alloys have unique properties, and mismatching alloy to part function can cause premature failure or performance issues. Below is a comparative table of commonly used aluminum alloys and their application precautions:
| Aleación de aluminio | Propiedades clave | Aplicaciones típicas | Critical Precautions |
| ADC12 | Buena castabilidad, fuerza moderada (σb≈310MPa), easy machining | Engine housings, cajas de cambios, general structural parts | Avoid low-temperature environments (<-10°C): High silicon content (11-13%) causes embrittlement at low temps. |
| A360 | Alta dureza (δ≈10%), excellent impact resistance | Ruedas, componentes de suspensión, piezas portantes | Do not use for high-temperature scenarios (>150°C): Toughness decreases sharply with prolonged heat exposure. |
| A356 | A prueba de calor (service temp up to 250°C), buena resistencia a la corrosión | Piezas de alta temperatura (p.ej., exhaust manifolds, EV motor casings) | Balance strength and machining: Higher magnesium content (0.2-0.4%) improves heat resistance but may increase tool wear. |
| AlSi17CuMg | Superhard (σb≈420MPa), alta resistencia al desgaste | Piezas de alta tensión (p.ej., hydraulic valve cores, engranajes de precisión) | Control impurity content: Strictly limit iron (<0.8%) to prevent brittle intermetallic compounds. |
Core Tip: For parts with mixed requirements (p.ej., resistencia al calor + tenacidad), conduct small-batch trials first. Por ejemplo, an EV battery frame may need A356 for heat resistance but require adjusting copper content to enhance strength—test 50-100 samples to verify performance.
2. Diseño de moldes & Fabricación: Avoid Structural Hidden Dangers
Mold design directly affects part quality and production efficiency. Poor mold structure often leads to defects like flash, contracción, or difficult ejection. The following are key precautions organized by mold component:
2.1 Compensación de contracción: Ensure Dimensional Accuracy
Aluminum alloys shrink during solidification—ignoring this leads to undersized parts. Sigue estas reglas:
- General Compensation: Apply an average shrinkage rate of 1.6%-1.8% for most aluminum parts. Por ejemplo, a part with a designed length of 100mm should have a mold cavity length of 101.6-101.8mm.
- Zonal Compensation: For complex structures (p.ej., costillas, bosses), adjust compensation rates:
- Add 0.2milímetros to rib thickness (p.ej., 3mm rib → 3.2mm mold cavity) to prevent shrinkage-induced thinning.
- Reduce compensation to 1.2%-1.4% for thin-walled areas (<2milímetros) to avoid overfilling.
2.2 Gating & Exhaust Systems: Prevent Porosity and Undercasting
- Gating System:
- The cross-sectional area of the main runner should be 15%-20% larger than the gate sleeve entrance to reduce flow resistance. Por ejemplo, if the gate sleeve entrance is 20mm², the main runner should be 23-24mm².
- Inner gate thickness = 40%-60% of part wall thickness (typical 3-5mm). A 5mm thick part needs an inner gate of 2-3mm—too thin causes premature solidification; too thick leads to excess material.
- Exhaust System:
- For deep-cavity parts (depth >50mm), usar three-stage exhaust (main exhaust groove + auxiliary exhaust needle + vacuum valve) to fully remove trapped air.
- Total exhaust cross-sectional area ≥ 1/3 of inner gate area. If the inner gate is 30mm², exhaust area should be ≥10mm² to avoid air entrainment.
2.3 Mecanismo de expulsión: Protect Part Integrity
- Ejector Pin Spacing: ≤Φ8mm for general parts; ≤Φ5mm for thin-walled parts (<1.5milímetros) to prevent deformation. For a 100mm×100mm thin-walled cover, arrange at least 9 pasadores eyectores (3×3 grid).
- Ejection Force Calculation: Account for expansion pressure (aluminum expands 2-3% cuando se calienta) y friction coefficient (0.15-0.2 for aluminum-mold contact). Use the formula: Fuerza de eyección (kN) = Part weight (kilos) × 8-10 (safety factor).
3. Process Parameter Control: Stabilize Production Quality
Aluminum die casting is sensitive to process parameters—small deviations can cause major defects. Focus on the following critical parameters with specific control ranges:
3.1 Control de temperatura: Balance Fluidity and Solidification
| Temperature Type | Control Range | Precautions for Special Parts |
| Aluminum Liquid Temperature | 670-720°C | Thin-walled parts (<2milímetros): Use upper limit (700-720°C) to improve fluidity; piezas de paredes gruesas (>10milímetros): Use lower limit (670-690°C) to reduce shrinkage. |
| Mold Preheating Temperature | 180-250°C (280°C for large parts >5kilos) | Avoid cold mold startup: Mold temp <150°C causes rapid solidification, leading to undercasting. Use electric heating rods or hot air to preheat evenly. |
3.2 Inyección & Pressurization: Avoid Turbulence and Shrinkage
- Velocidad de inyección: 0.5-1.2EM. Para piezas complejas (p.ej., 5G filter cavities with narrow grooves), usar stepped speed increase (0.5m/s → 0.8m/s → 1.0m/s) to prevent splashing.
- Pressurization Build-Up Time: 3-8 artículos de segunda clase. Extend to 10 artículos de segunda clase for stress-bearing parts (p.ej., automotive suspension brackets) to ensure full compaction.
- Special Processes:
- Fundición a presión al vacío: Cavity vacuum >90kPa reduces porosity to <1%—suitable for pressure-resistant parts (p.ej., cilindros hidráulicos).
- Oxygenated Die Casting: Inject pure oxygen into the cavity to reduce inclusions by 70%—ideal for parts requiring high surface quality (p.ej., marcos de teléfonos inteligentes).
3.3 Tenencia & Enfriamiento: Ensure Dimensional Stability
- Holding Time: 10-25 artículos de segunda clase. Add 2 seconds for every 1mm increase in gate thickness. A 5mm gate needs 18-20 seconds of holding time to compensate for shrinkage.
- Tiempo de enfriamiento: 8-20 artículos de segunda clase. Use cooling inserts (p.ej., copper inserts with water channels) to shorten cooling time by 30% para piezas de paredes gruesas, improving production efficiency.
4. Defect Prevention & Response: Troubleshoot Common Issues
Even with strict control, defects may occur. The table below lists typical defects, their causes, and immediate solutions:
| Defect Type | Main Causes | Soluciones |
| Undercasting | Insufficient inner gate area; low aluminum liquid temperature | Expand inner gate cross-sectional area by 20%; increase aluminum liquid temp by 10-15°C. |
| Flash | Inadequate clamping force; mold parting surface wear | Increase clamping force to 85% of equipment rating (p.ej., 850kN for 1000kN machine); grind and repair worn parting surfaces. |
| Contracción | Lack of feeding channel; short holding time | Add open riser neck (diameter = 1.5×gate thickness); extend holding time by 3-5 artículos de segunda clase. |
| Air Holes | Poor exhaust; high moisture in raw materials | Add exhaust plugs at fixed coil positions; dry raw materials at 120-150°C for 4-6 horas. |
| Cracks | Sharp corners; uneven cooling | Increase fillet radius to ≥R3; optimize cooling system (p.ej., add water channels near sharp corners). |
5. Post-tratamiento & Control de calidad: Ensure Final Performance
Post-treatment and inspection are the last lines of defense against defective parts. Follow these precautions:
5.1 Post-Treatment Processes
- Mecanizado de precisión:
- CNC milling allowance: 0.3-0.5mm per side (0.8mm for complex surfaces with curved shapes).
- Usar PCD (polycrystalline diamond) inserts to improve tool life by 3-5 times compared to carbide inserts—critical for high-volume production.
- Surface Strengthening:
- Micro-arc Oxidation: Achieve film thickness of 15-25μm; ensure salt spray test >2000 hours for corrosion-resistant parts (p.ej., componentes marinos).
- Composite Coating (Ni-P/PTFE): Apply double coating for parts requiring wear resistance (p.ej., sliding bearings) to reduce friction coefficient by 40%.
- Defect Repair:
- Argon arc welding: Current ≤90A, interlayer temperature <150°C to avoid thermal cracks.
- Metal penetrant impregnation: Use low-viscosity impregnants for small pores (<0.1milímetros) to ensure leak tightness.
5.2 Quality Inspection Standards
- Inspección dimensional: Use CMM (Máquina de medición de coordenadas) for key dimensions (CTQ, Critical to Quality) with tolerance ≤±0.15mm.
- Rendimiento mecánico: Tensile test requires σb≥320MPa, δ≥2% for structural parts.
- Leak Detection: Helium mass spectrometry ensures leakage rate <1×10⁻⁶mbar·L/s for pressure-bearing parts (p.ej., EV water-cooled plates).
- Internal Defects: X-ray real-time imaging meets ASTM E446 Level B to detect internal porosity and inclusions.
6. Yigu Technology’s Perspective on Aluminum Die-Casting Precautions
En Yigu Tecnología, we believe that aluminum die-casting success lies in “control preciso + systematic prevention.” Many manufacturers focus only on process parameters but ignore early-stage DFM (Diseño para la fabricabilidad) reviews—for example, designing parts with sharp corners that inevitably cause cracks. We recommend establishing a cross-departmental DFM team (including design, moho, and process engineers) to identify manufacturability issues before mold production.
Para producción en masa, we advocate proceso estadístico (Control estadístico de procesos) to monitor key parameters (temperatura del molde, injection speed, tiempo de enfriamiento) in real time—this reduces defect rates by 40-50% compared to manual monitoring. Además, for high-end parts like aerospace servo valve housings, combining vacuum die-casting with selective laser cladding (for local reinforcement) balances precision and performance. By integrating these precautions into every stage, manufacturers can achieve a yield rate of over 98% for aluminum die-cast parts.
7. Preguntas frecuentes: Common Questions About Aluminum Die-Casting Precautions
Q1: Can I reuse aluminum scrap from die casting, and what precautions should I take?
Sí, but the proportion of return material should be controlled within 30% to avoid increasing impurity content. Before reuse, remove surface oxides and oil stains by shot blasting; preheat scrap to 150-200°C to eliminate moisture. Mixing return material with new ingots in a 3:7 ratio maintains alloy performance stability.
Q2: How to prevent mold sticking during aluminum die casting?
Primero, ensure mold preheating temperature is ≥180°C (cold molds increase adhesion). Segundo, use high-temperature resistant release agents (p.ej., graphite-based) and apply a uniform film (thickness 5-10μm) to the cavity. Tercero, polish the mold cavity to Ra≤0.8μm—rough surfaces increase friction and sticking risk.
Q3: What are the precautions for packaging and transporting aluminum die-cast parts?
- Anti-Rust Protection: Impregnate with LZ-301 anti-rust oil (oil film thickness 3-5μm) to prevent oxidation during storage.
- Physical Protection: Use pearl cotton for corner protection and EPE foam padding between layers to avoid collision scratches.
- Environmental Control: Maintain relative humidity ≤60% and temperature -20~45°C during transportation—avoid extreme temperatures that cause thermal deformation.
