If you’re a product designer, engineer, or entrepreneur gearing up for prototype development, one of the first and most critical questions you’ll face is: What materials can be used for prototype processing? The right material choice directly impacts your prototype’s functionality, durabilidad, costo, and even how well it represents the final product. In this guide, we’ll break down all common prototype materials—from metals to plastics and beyond—explain their key properties, ideal use cases, and processing tips, so you can make an informed decision for your project.
Why Material Choice Matters for Prototype Processing
Before diving into specific materials, let’s clarify why this decision is so important. A prototype isn’t just a “test piece”—it’s a tool to validate design, test performance, and showcase your product to stakeholders. The wrong material can lead to:
- Inaccurate performance tests: Por ejemplo, using a weak plastic for a structural part prototype won’t reflect how the final metal version will hold up.
- Wasted time and money: If a material is too hard to machine or doesn’t meet your project’s needs, you’ll have to restart the prototype process.
- Poor stakeholder perception: A low-quality prototype (p.ej., a brittle plastic that cracks easily) can undermine confidence in your design.
That’s why understanding the pros, cons, and best uses of each material is essential. Below, we’ll cover the three main categories of prototype materials: metal alloys, acero inoxidable, y plástica—plus special materials for unique needs.
Aleaciones metálicas: Strong and Durable Prototype Materials
Metal alloys are a top choice for prototypes that need strength, dureza, or resistance to wear. They’re commonly used for industrial parts, componentes automotrices, and structural prototypes. Let’s break down the most popular metal alloys for prototype processing, sus propiedades, and ideal applications.
| Metal Alloy Type | Grados comunes | Propiedades clave | Processing Method (CNC/3D Printing) | Surface Treatment Options | Ideal Prototype Use Cases |
| Aleaciones de aluminio | 2024, 6061, 6063, 6082, 7075, ADC12 | Ligero (densidad: 2.7 gramos/cm³), good strength, resistente a la corrosión | Mecanizado CNC (most common); 3Impresión D (para formas complejas) | Arenado, anodizado, cuadro | Piezas aeroespaciales, soportes automotrices, cajas electrónicas |
| Bronce | C51000, C54400 | Alta ductilidad, buena conductividad eléctrica | Mecanizado CNC | Pulido, enchapado | Conectores electricos, piezas decorativas |
| Latón | C26000 (Cartridge Brass) | mecanizable, resistente a la corrosión, golden appearance | Mecanizado CNC | Pulido, lacquering | Decorative prototypes, hardware components |
| Cobre | Electrolytic Copper (C11000) | Excelente conductividad eléctrica, malleable | Mecanizado CNC, 3Impresión D (metal) | Pulido, tin plating | Disipadores de calor, electrical prototypes |
| Titanium Alloy | Ti-6Al-4V | Alta relación resistencia-peso, resistente a la corrosión (incluso en agua salada) | Mecanizado CNC (slow, due to hardness); 3Impresión D | Anodizado, pasivación | Dispositivos médicos, componentes aeroespaciales |
| Magnesium Alloy | AZ31B, AZ91D | Ultraligero (densidad: 1.8 gramos/cm³), good stiffness | Mecanizado CNC | Chemical conversion coating | Lightweight automotive parts, electrónica de consumo |
| Zinc Alloy | ZA-8, ZA-12 | Punto de fusión bajo, easy to cast | fundición a presión (para lotes pequeños), Mecanizado CNC | Chromate conversion coating | Prototipos de juguetes, pequeñas piezas estructurales |
Key Notes on Aluminum Alloys
Aluminum alloys are the most widely used metal materials for prototypes—and for good reason. Calificaciones como 6061 y 6063 are easy to machine (CNC machining can finish a 6061 prototype in 1–3 days) and offer a great balance of strength and cost. 7075 aluminum is stronger (used for high-stress parts) but slightly harder to machine, so it may add 1–2 days to your prototype lead time.
Después del mecanizado, aluminum prototypes are often arenado to remove tool marks and anodized (a process that adds a protective oxide layer) to improve surface quality and durability. Anodizing also lets you add color (p.ej., negro, plata, azul) to your prototype—perfect for presentation.
Acero inoxidable: High-Strength and Corrosion-Resistant
Stainless steel is a subset of steel that contains chromium (at least 10.5%), which gives it excellent corrosion resistance. It’s ideal for prototypes that will be exposed to moisture, quimicos, or high temperatures. Below are the most common stainless steel types for prototypes.
| Stainless Steel Type | Grados comunes | Propiedades clave | maquinabilidad (1=Easy, 5=Hard) | Magnético? | Ideal Prototype Use Cases |
| Austenitic (Más común) | 304, 316 | No magnético, alta resistencia a la corrosión, ductile | 3 (Moderado) | No | Equipos de procesamiento de alimentos, medical tools, piezas marinas |
| Ferritic | 409, 430 | Magnético, buena resistencia a la corrosión, menor costo | 2 (Easy) | Sí | Automotive exhaust parts, electrodomésticos |
| Martensitic | 410, 420 | Magnético, hardenable (via heat treatment), alta resistencia | 4 (Duro) | Sí | herramientas de corte, valvulas, high-stress mechanical parts |
| Galvanized Steel | G90, G60 | Zinc-coated (prevents rust), bajo costo | 2 (Easy) | Sí | Outdoor prototypes, soportes estructurales |
| Acero dulce (Acero bajo en carbono) | 1018, 1020 | Bajo costo, easy to machine, buena soldabilidad | 1 (Easy) | Sí | Basic structural prototypes, paréntesis |
Why 304 y 316 Stainless Steel Are Top Choices
304 acero inoxidable is the most popular for prototypes—it’s affordable, easy to machine, and works for most non-extreme environments. 316 acero inoxidable is more corrosion-resistant (thanks to added molybdenum) but costs 20–30% more. It’s worth the extra cost for prototypes that will be exposed to saltwater (p.ej., piezas marinas) o productos químicos (p.ej., equipo de laboratorio).
One unique benefit of stainless steel is its magnetic absorption (for ferritic and martensitic grades). This makes it ideal for prototypes that need to attach to magnetic surfaces—like a tool prototype that needs to stick to a workshop magnet board.
Materiales plasticos: Versatile and Cost-Effective for Prototypes
Plastics are the most versatile prototype materials—they come in a wide range of hardness, flexibilidad, transparencia, y resistencia al calor. They’re perfect for consumer products, electrónica, dispositivos médicos, and prototypes where weight or cost is a concern. Let’s break down the most common plastics for prototype processing, plus when to choose 3D printing vs. Mecanizado CNC.
Common Plastic Materials for Prototypes
| Plastic Type | Common Grades/Variants | Propiedades clave | Processing Suitability (3D Printing/CNC) | Resistencia a la temperatura (Max) | Ideal Prototype Use Cases |
| ABS | ABS estándar, High-Temperature ABS | Resistente a impactos, easy to machine, bajo costo | Mecanizado CNC (excelente); 3Impresión D (MDF) | 80–100°C | Cajas para electrónica de consumo, toy prototypes |
| PÁGINAS (polipropileno) | PP Homo, PP Copolymer | Resistente a productos químicos, flexible, ligero | Mecanizado CNC; 3Impresión D (MDF) | 100–120°C | Contenedores de comida, carcasas para dispositivos médicos |
| ordenador personal (policarbonato) | Lexan (brand name) | High impact strength, transparente, a prueba de calor | Mecanizado CNC; 3Impresión D (SLA/FDM) | 120–135°C | Safety goggles, electronic display covers |
| PMMA (Acrílico) | Plexiglas (brand name) | Transparente (92% transmisión de luz), resistente a los arañazos | Mecanizado CNC; 3Impresión D (SLA) | 80–90°C | Vitrinas, transparent prototypes |
| POM (Acetal) | Delrín (brand name) | Baja fricción, alta rigidez, resistente al desgaste | Mecanizado CNC | 100–110°C | Engranajes, aspectos, mechanical components |
| PU (Poliuretano) | Domestic PU, Imported PU, Transparent PU, Soft PU | Flexible (Shore hardness: 30A–90D), durable | 3Impresión D (SLA for soft variants); Mecanizado CNC (for rigid variants) | 80–100°C | Cushioned parts, apretones, flexible enclosures |
| Silicona | Translucent 905, 918; Transparent T-4, 8678 | A prueba de calor, flexible, biocompatible | 3Impresión D (SLA); Mold Casting | 200–250°C | Medical seals, juntas, flexible prototypes |
3D Impresión vs.. CNC Machining for Plastic Prototypes
When should you use 3D printing vs. CNC machining for plastic prototypes? It depends on your batch size, precision needs, and design complexity:
- 3Impresión D: Lo mejor para 1–5 unit prototypes with complex shapes (p.ej., estructuras reticulares, socavados). It’s faster for small batches (1–2 días) and doesn’t require expensive tooling. Sin embargo, 3D printed plastics may have slightly lower precision (tolerancia: ±0,1 mm) compared to CNC machining.
- Mecanizado CNC: Ideal para lotes pequeños (5–50 unidades) that need high precision (tolerancia: ±0,05 mm) or better mechanical properties. CNC machined plastics have smoother surfaces (less post-processing needed) and are more durable for functional tests. The downside? It takes longer (3–5 días) and costs more for very complex designs.
Special Materials for Unique Prototype Needs
While metal alloys, acero inoxidable, and plastics cover most prototype needs, some projects require special materials. These are used when the final product will operate in extreme conditions (p.ej., high heat, quimicos) or has unique requirements (p.ej., biocompatibilidad). Examples include:
- Special Alloys: Inconel (for high-temperature aerospace parts), Hastelloy (para resistencia química), and Titanium Grade 23 (biocompatible for medical implants). These are more expensive and harder to machine but essential for specialized prototypes.
- High-Performance Plastics: OJEADA (polyetheretherketone) – heat-resistant (max temp: 260°C) and biocompatible, used for medical and aerospace prototypes; PTFE (teflón) – non-stick and chemical-resistant, used for lab equipment prototypes.
- Materiales compuestos: Carbon fiber-reinforced plastics (CFRP) – lightweight and ultra-strong, used for high-performance prototypes like racing car parts or drone frames.
How to Choose the Right Material for Your Prototype
Con tantas opciones, how do you pick the best material for your project? Follow these four steps:
- Define Your Prototype’s Purpose:
- Is it for visual presentation (p.ej., a client demo)? Prioritize materials with a nice finish (p.ej., polished brass, transparent PMMA).
- Is it for functional testing (p.ej., pruebas de estrés)? Choose a material with properties matching the final product (p.ej., 6061 aluminum for a structural part that will be aluminum in production).
- Is it for environmental testing (p.ej., moisture resistance)? Pick corrosion-resistant materials (p.ej., 316 acero inoxidable, PP plastic).
- Consider Mechanical Property Requirements:
- Need strength? Go for 7075 aluminum or 304 acero inoxidable.
- Need flexibility? Choose soft PU or silicone.
- Need transparency? Opt for PMMA or transparent PC.
- Set a Cost Budget:
- Low budget: ABS plastic, acero dulce, o 6063 aluminio.
- Mid budget: 6061 aluminio, 304 acero inoxidable, or PC plastic.
- High budget: Titanium alloy, 316 acero inoxidable, or PEEK plastic.
- Check Processing Feasibility:
- If your design has complex curves or undercuts, 3impresión D (with plastic or metal) may be the only option.
- If you need high precision, CNC machining is better than 3D printing for most materials.
Yigu Technology’s Perspective on Prototype Material Selection
En Yigu Tecnología, we believe prototype material selection is a collaborative process—we don’t just “supply materials” but help clients match materials to their goals. Nuestro equipo: 1) Provides material samples (p.ej., 6061 aluminio, 304 acero inoxidable, ABS) so clients can test feel and finish; 2) Recommends cost-effective alternatives (p.ej., 6061 instead of 7075 if strength needs are moderate); 3) Optimizes processing (CNC/3D printing) for each material to cut lead time by 15–20%. We prioritize transparency—sharing material costs, machining challenges, and performance trade-offs upfront to avoid rework. For most projects, we help clients narrow down 2–3 ideal materials in 1–2 days.
Preguntas frecuentes:
1. Can I use a different material for my prototype than the final product?
Sí, but only if it doesn’t affect your prototype’s purpose. Por ejemplo, using ABS plastic for a visual prototype of a metal part is fine—since you’re only showcasing the design. But for functional testing (p.ej., stress or heat tests), the prototype material should match the final product’s key properties (p.ej., fortaleza, resistencia al calor) to get accurate results.
2. Which is more cost-effective: metal or plastic prototypes?
Plastic prototypes are usually cheaper—ABS or PP plastic costs 30–50% less than aluminum or stainless steel. They also require less machining time (faster turnaround) and lower post-processing costs. Sin embargo, if your prototype needs strength (p.ej., a structural part), metal may be worth the extra cost to avoid testing failures.
3. How do I know if a material is suitable for 3D printing vs. Mecanizado CNC?
Check two things: 1) Design complexity: If your prototype has undercuts, estructuras reticulares, or internal channels, 3D printing is better (CNC can’t reach these areas easily). 2) Batch size: For 1–5 units, 3D printing is faster and cheaper. Para 5+ unidades, CNC machining is more cost-effective (it has higher per-unit speed once set up). Most plastics and some metals (aluminio, titanio) work for both methods—ask your manufacturer for guidance if you’re unsure.
