What Material Is Generally Used for Plastic Prototype Molds?

Machinado CNC de la parte del molde

Elegir el material adecuado para plastic prototype molds directly impacts the mold’s durability, velocidad de producción, precisión, y costo. There is no “one-size-fits-all” option—materials vary based on project needs like production quantity, Parte complejidad, precision requirements, y presupuesto. This article breaks down the most common materials, sus pros y contras, casos de uso, and a step-by-step guide to select the best fit.

1. Common Materials for Plastic Prototype Molds (Tabla de comparación)

Below is a comprehensive overview of 6 widely used materials, including their key traits and application scenarios:

Categoría de materialSpecific TypesVentajas clavePrincipales desventajasEscenarios de aplicación ideales
Aleación de aluminio6061, 7075– Ligero (easy to handle) – Excelente maquinabilidad (producción rápida) – Good thermal conductivity (faster cooling for parts)Low hardness (wears quickly) – Not suitable for high-volume productionSmall/medium-sized prototypes, trial samples, appearance parts (P.EJ., Prototipos de la caja del teléfono)
AceroP20, H13, 45# Acero– Alta dureza (resistente al desgaste) – Suitable for medium/large molds – A prueba de calor (works with thermoplastics)– Pesado (hard to transport/operate) – Long processing cycle – Alto costoPartes funcionales, complex-structure prototypes, high-volume production molds (P.EJ., automotive component molds)
Baquelita (Fenólico)Phenolic resin-based– Bajo costo (budget-friendly) – Fácil de procesar (fast mold making)– Baja fuerza (prone to breakage) – Mala resistencia al desgaste – Baja precisiónBaja precisión, pequeño, prototipos no funcionales (P.EJ., simple shape test parts)
Epoxy/Polyurethane ResinResina epoxídica, poliuretano– Prototipos rápidos (curado rápido) – Suitable for soft moldsLow cost for small batches– Baja fuerza (not durable) – Not for high-precision or long-term useSimple-shape prototypes, exterior parts, temporary molds (P.EJ., short-term trial production molds)
Copper/Beryllium Copper AlloyCobre puro, cobre de berilio– Excelente conductividad térmica (fast part cooling) – Good precision retention– Alto costo (expensive material) – Difficult to process (needs specialized tools)Piezas de paredes delgadas, componentes de precisión, molds requiring fast cooling (P.EJ., high-precision electronic part molds)
3D Materiales de impresiónPhotosensitive resin, nylonNo traditional machining needed (direct 3D printing) – Ideal for complex shapesFast prototyping for small batchesLimited strength (no resistente al desgaste) – Not suitable for high-volume productionComplex-shape prototypes, small-batch rapid molds (P.EJ., intricate medical device prototype molds)

2. Key Factors to Consider When Selecting Materials

To avoid 选错 materials (and wasting time/money), follow this 4-step, cause-effect driven guide—each factor directly influences your material choice:

Paso 1: Define Production Quantity

  • Lotes pequeños (1–50 partes): Elegir aleación de aluminio, resina epoxídica, o 3D Materiales de impresión (producción rápida, bajo costo).
  • Lotes grandes (500+ regiones): Optar por acero (resistente al desgaste, durable enough for repeated use).
  • Lotes medianos (50–500 partes): Balance with aleación de aluminio (if precision needs are moderate) o low-cost steel (if durability is critical).

Paso 2: Assess Precision Requirements

  • Alta precisión (±0.01mm or tighter): Usar acero (stable dimension retention) o copper/beryllium copper alloy (excellent precision for small parts).
  • Moderate precision (± 0.1 mm): Aleación de aluminio o 3D printing with photosensitive resin Funciona bien.
  • Baja precisión (± 1 mm): Baquelita o resina epoxídica is sufficient (budget-friendly).

Paso 3: Evaluate Budget Constraints

  • Bajo presupuesto: Priorizar bakelite, resina epoxídica, o entry-level 3D printing materials (nylon/PLA-based).
  • Medium budget: Aleación de aluminio (balances cost and performance) es la mejor opción.
  • Alto presupuesto: Comprar acero (por durabilidad) o beryllium copper alloy (for high precision and cooling speed).

Paso 4: Analyze Part Complexity

  • Formas complejas (P.EJ., internal hollows, Detalles finos): 3D Materiales de impresión (no need for traditional machining) o aleación de aluminio (easy to mill complex features).
  • Formas simples (P.EJ., paneles planos, basic frames): Baquelita, resina epoxídica, o low-cost steel (fast processing, no extra complexity).

3. La perspectiva de la tecnología de Yigu

En la tecnología yigu, we believe plastic prototype mold material selection is a “balance of needs” rather than chasing a single “best material.” For most clients—especially startups and small businesses—aleación de aluminio (6061) is the most versatile choice: it’s fast to machine, rentable, and precise enough for 80% of prototype needs. Para proyectos de alta precisión (P.EJ., Prototipos de dispositivos médicos), Recomendamos beryllium copper alloy for its cooling speed and precision retention. For budget-limited, simple tests, 3D printed photosensitive resin molds cut lead time by 50% compared to traditional materials. Nuestro consejo: Start by listing your top 2 priorities (P.EJ., “speed + low cost” or “precision + durability”)—this narrows down materials in minutes.

4. Preguntas frecuentes (Preguntas frecuentes)

  1. q: Can I use 3D printing materials for plastic prototype molds that need to produce 100 regiones?

A: Depende del material. Photosensitive resin molds are only suitable for 10–20 parts (low wear resistance), pero nylon-based 3D printing materials can handle 50–80 parts. Para 100 regiones, Recomendamos aleación de aluminio (more durable and cost-effective).

  1. q: Is steel always better than aluminum alloy for plastic prototype molds?

A: No. Steel is better for high-volume, high-wear scenarios, but aluminum alloy is superior for small batches: it’s 3x faster to machine, 1/3 the weight, y 50% más económico. Choose steel only if you need 500+ parts or extreme durability.

  1. q: Why is beryllium copper alloy used for thin-walled plastic parts?

A: Es Excelente conductividad térmica (2x higher than aluminum) ensures thin-walled parts cool quickly and evenly, reducing warping or deformation. This is critical for thin parts (P.EJ., 0.5mm thick electronic casings) where shape accuracy is key.

Índice
Desplácese hasta arriba