How to Create a Precise CNC Machining Electric Cooker Prototype Model?

melamine formaldehyde resin injection molding

Una alta calidad CNC machining electric cooker prototype model is vital for verifying product design, testing structural rationality, y garantizar la confiabilidad funcional antes de la producción en masa. This article systematically breaks down the entire development process—from material selection to delivery—using clear comparisons, step-by-step guidelines, and practical solutions to address common challenges, helping you create a prototype that balances appearance accuracy and functional practicality.

1. Preparación preliminar: Lay the Foundation for Prototype Success

Preliminary preparation directly determines the prototype’s precision and usability. Se centra en dos tareas centrales.: 3D Modelado & structural analysis y selección de material, both tailored to the unique needs of electric cookers (P.EJ., resistencia al calor, food safety).

1.1 3D Modelado & Structural Optimization

Utilice el software CAD profesional (P.EJ., Solidworks, y) to create a detailed 3D model of the electric cooker. The model must cover all components and prioritize structural optimization to avoid machining errors:

  • Desglose de componentes: Split the cooker into independent parts like the puedo cuerpo, inner liner, base, control panel, y tapa para facilitar el mecanizado y el montaje.
  • Áreas clave de enfoque de optimización:
  • Pot Body Structure: Design the inner cavity to match the heating plate (ensuring even heat distribution) with a tolerance of ±0.05mm.
  • Sealing Groove: Diseñe con precisión la ranura para el anillo de sellado de silicona (ancho: 2-3 mm, profundidad: 1.5–2 mm) to prevent water leakage.
  • Thin-Walled Parts: Reinforce areas like the pot body sidewalls (espesor: 1.2–1.5 mm) with process ribs to avoid deformation during machining.

¿Por qué optimizar estas estructuras?? A poorly designed sealing groove can cause 80% of leakage issues during testing, while unreinforced thin walls may deform by 0.3mm or more—requiring costly rework.

1.2 Selección de material: Relacionar materiales con funciones de componentes

Different components of the electric cooker need materials with specific properties (P.EJ., food safety for inner liners, heat dissipation for bases). The table below compares the most suitable materials:

Tipo de materialVentajas claveComponentes idealesRango de costos (por kg)Maquinabilidad
Aleación de aluminio (6061/6063)Ligero, resistente a la corrosión, buena disipación de calorPot body, base, estructuras de soporte\(6- )10Excelente (corte rápido, Bajo desgaste de herramientas)
Acero inoxidable (304)Aficionado a la comida, resistente a la alta temperatura, fácil de limpiarInner liner, food-contacting parts\(15- )20Moderado (needs coolant to prevent sticking)
Acrylic/PC BoardAlta transparencia, resistente al impactoVentanas de visualización, indicator lampshades\(5- )8Bien (requires high-speed cutting to avoid cracking)
Nylon/POMAislamiento eléctrico, resistente al desgasteSwitch brackets, insulation components\(4- )7Excelente (no burrs after machining)

Ejemplo: The inner liner, que contacta directamente con los alimentos, usos 304 acero inoxidable para cumplir con los estándares de seguridad alimentaria. el cuerpo de la olla, necesitando disipación de calor, está hecho de 6061 aleación de aluminio.

2. Proceso de mecanizado CNC: Convierta el diseño en componentes físicos

La fase de mecanizado CNC sigue un flujo de trabajo lineal:programación & diseño de trayectoria → mecanizado de componentes clave → control de tolerancia—con especial atención a las estructuras específicas de cocinas eléctricas (P.EJ., paredes interiores de maceta curvadas, bases de paredes delgadas).

2.1 Programación & Toolpath Design

Importar el modelo 3D en el software CAM (P.EJ., Maestro, PowerMill) para generar trayectorias de herramientas y código G. Los pasos clave incluyen:

  1. Configuración de parámetros de corte (por material):
  • Aleación de aluminio: Velocidad = 8000–12000 rpm; Avance = 1500–3000 mm/min; Profundidad de corte = 0,5–2 mm (corte en capas).
  • Acero inoxidable: Velocidad = 6000–8000 rpm; Avance = 1000–1500 mm/min; Profundidad de corte = 0,3–1 mm (más lento para la dureza).
  • Acrílico: Velocidad = 10.000–15.000 rpm; Feed = 800–1200 mm/min; Cutting depth = 0.2–0.5mm (previene el agrietamiento).
  1. Selección de herramientas:
  • Rough machining: Use large-diameter flat knives (φ10–φ20mm) to remove 80–90% of excess material.
  • Refinamiento: Use small-diameter ball knives (φ4–φ6mm) para superficies curvas (P.EJ., pot inner walls) para asegurar el acabado superficial (Ra1.6–Ra3.2).
  • Hole processing: Use drills (φ1–φ10mm) + grietas (M2–M6) for installation holes and screw holes.

2.2 Key Component Machining Strategies

Different components require tailored machining approaches to ensure quality:

  • Pot Body (Aleación de aluminio):
  • Use extended tool holders to machine the inner cavity (avoids tool interference).
  • Chamfer edges (R1–R2mm) to remove burrs and improve safety.
  • Inner Liner (Acero inoxidable):
  • Adopt brushed processing (No. 4 proceso) Para lograr un suave, superficie fácil de limpiar.
  • Use EDM for complex holes (P.EJ., steam vents) to ensure precision.
  • Thin-Walled Base:
  • Use low cutting depth (0.2-0.3 mm) and high rotation speed (12000–15000 rpm) para evitar la deformación.
  • Add temporary process ribs during machining (removed after processing).

2.3 Tolerancia & Tratamiento superficial

  • Tolerancia dimensional: Key mating dimensions (P.EJ., pot body and lid fit) have a tolerance of ±0.05mm; non-mating dimensions (P.EJ., base thickness) have ±0.1mm.
  • Tratamiento superficial:
  • Aleación de aluminio: Ardor de arena (Ra1.6–Ra3.2) + Anodizante (color options: negro/plata) para resistencia a la corrosión.
  • Acero inoxidable: Cepillado (No. 4 proceso) or mirror polished (for high-end prototypes).
  • Acrílico: Pulido de diamantes + anti-scratch coating to enhance transparency and durability.

3. Asamblea & Verificación de funciones: Ensure Prototype Reliability

Assembly and function verification confirm the prototype meets design standards for usability and safety.

3.1 Step-by-Step Assembly Process

  1. Pre-Assembly: Assemble the pot body, heating plate, and temperature control sensor; test electrical connectivity (ensure no short circuits).
  2. Asamblea de vivienda: Fix the housing and base with buckles and screws; install control buttons and indicator lights (align with pre-machined holes).
  3. Sealing Installation: Place the silicone sealing ring into the lid’s groove; press firmly to ensure a tight fit.

3.2 Function Testing Checklist

Test the prototype in three key areas to validate performance:

Categoría de pruebaHerramientas/MétodosCriterios de aprobación
Heating TestTemperature sensor, power meterHeats to 100°C within 10–15 minutes.- Temperature control switch triggers automatic power-off at 100°C.
Prueba de selladoLlenado de agua, inspección visualNo water leakage from the lid or base after 30 minutes of standing.- Sealing ring remains in place (no displacement).
Estabilidad estructuralPrueba de peso, torque wrenchPot body withstands maximum capacity (P.EJ., 5L water) without deformation.- Buttons and knobs stay tight (esfuerzo de torsión: 1.5–2,0 N·m).

4. Control de calidad & Entrega: Ensure Prototype Quality

Strict quality control and clear delivery standards guarantee the prototype meets expectations.

4.1 Medidas de control de calidad

  • Monitoreo de procesos:
  • First-piece inspection: Use a coordinate measuring instrument to compare the first machined component with design drawings (ensures no programming errors).
  • Sampling inspection: Check 10–15% of key dimensions (P.EJ., pot diameter, posición del agujero) during batch processing.
  • Inspección visual:
  • Check for surface scratches, pozos, and color aberrations (no visible defects on visible parts).
  • Ensure transparent parts (P.EJ., viewing windows) have no bubbles or impurities; edges are not cracked.

4.2 Delivery Standards & Cycle

  • Delivery Content: 1 fully assembled prototype model + 1 set of spare parts (tornillos, sealing rings) + 1 detailed test report (including heating curves, sealing results).
  • Processing Cycle: 7–10 working days (varies by prototype complexity and material availability).
  • Servicio postventa: Free repair of non-human damage within 3 meses; provide design optimization suggestions based on test results.

La perspectiva de la tecnología de Yigu

En la tecnología yigu, vemos CNC machining electric cooker prototype models como “design validator—they turn ideas into tangible products while minimizing mass production risks. Our team prioritizes two core aspects: precision and safety. For critical parts like the inner liner, we use food-grade 304 stainless steel and strict tolerance control (± 0.03 mm) to meet global safety standards. For thin-walled structures, we adopt symmetrical machining and process rib support to avoid deformation. We also integrate 3D scanning post-machining to verify accuracy. Al centrarse en estos detalles, we help clients reduce post-production defects by 20–25% and cut time-to-market by 1–2 weeks. Whether you need an appearance prototype for exhibitions or a functional one for testing, adaptamos las soluciones a tus objetivos.

Preguntas frecuentes

  1. q: How long does it take to produce a CNC machining electric cooker prototype model?

A: Typically 7–10 working days. This includes 1–2 days for 3D programming, 3–4 días para mecanizado CNC, 1–2 days for assembly & pruebas, y 1 Día para la inspección de calidad & report preparation.

  1. q: Can I use a different material for the inner liner instead of 304 acero inoxidable?

A: No se recomienda. 304 stainless steel is the only material that meets both food safety standards (P.EJ., FDA, UE 10/2011) and high-temperature resistance requirements. Alternatives like aluminum may react with acidic foods, while plastic can’t withstand cooking temperatures.

  1. q: What should I do if the prototype leaks during the sealing test?

A: Primero, check if the silicone sealing ring is damaged or misaligned (replace or reposition if needed). Si el anillo está intacto, verify the sealing groove dimensions (la tolerancia debe ser ±0,05 mm). Si la ranura es demasiado grande, add a thin silicone pad to the lid—this fix takes 1–2 hours and resolves most leakage issues.

Índice
Desplácese hasta arriba