Superaleación GH4169: Propiedades, Aplicaciones & Guía completa

Fabricación de piezas a medida.

Si necesita una superaleación que destaque en resistencia a altas temperaturas, resistencia a la corrosión, y rendimiento ante la fatiga, ya sea para motores a reacción o turbinas de gas, la superaleación GH4169 es la mejor opción. Esta aleación a base de níquel (equivalente a Inconel 718) equilibra durabilidad y trabajabilidad, convirtiéndolo en un elemento básico en el sector aeroespacial, energía, y las industrias de defensa. Esta guía desglosa sus propiedades clave., usos del mundo real, […]

Si necesita una superaleación que destaque en resistencia a altas temperaturas, resistencia a la corrosión, and fatigue performance—whether for jet engines or gas turbines—GH4169 superalloy es una de las mejores opciones. Esta aleación a base de níquel (equivalente a Inconel 718) equilibra durabilidad y trabajabilidad, convirtiéndolo en un elemento básico en el sector aeroespacial, energía, y las industrias de defensa. Esta guía desglosa sus propiedades clave., usos del mundo real, métodos de fabricación, and how it compares to other materials—so you can make informed decisions for your high-demand projects.

1. Material Properties of GH4169 Superalloy

GH4169’s performance stems from its carefully balanced composition and exceptional high-temperature traits. Let’s explore each property clearly.

1.1 Composición química

Every element works together to boost strength, resistencia a la fluencia, y protección contra la corrosión. Below is its typical composition (by weight):

ElementContent Range (%)Key Role
Níquel (En)50–55Base metal—provides high-temperature stability and ductility
Chromium (cr)17–21Enhances oxidation resistance (critical for turbine and engine parts)
Cobalt (Co)≤1.0Improves high-temperature strength without reducing ductility
Molibdeno (Mes)2.8–3.3Boosts strength and corrosion resistance in harsh environments
Niobium (Nb)5.5–6.5Forms strengthening phases (gamma double prime) for creep resistance
Hierro (fe)17–21Adds structural strength and reduces material cost
Carbon (do)≤0.08Strengthens grain boundaries (prevents cracking at high temps)
Manganese (Mn)≤0.35Aids in manufacturing (p.ej., soldadura) without compromising performance
Silicio (Y)≤0.35Reduces oxidation at extreme temperatures
Sulfur (S)≤0.015Kept ultra-low to prevent brittleness in high-heat conditions
Aluminio (Alabama)0.2–0.8Works with niobium to form strengthening phases
Titanio (De)0.65–1.15Enhances high-temperature strength and creep resistance

1.2 Physical Properties

These traits make GH4169 ideal for high-temperature design and industrial use:

  • Densidad: 8.2 gramos/cm³ (heavier than aluminum, lighter than Hastelloy X)
  • Punto de fusión: 1260–1320°C (2300–2410°F) – handles extreme heat in jet engines and turbines
  • Conductividad térmica: 11.4 W/(m·K) at 20°C (68°F); 19.8 W/(m·K) at 800°C – efficient heat transfer
  • Thermal Expansion Coefficient: 12.2 μm/(m·K) (20–100°C); 16.5 μm/(m·K) (20–800°C) – minimal warping in heat cycles
  • Electrical Resistivity: 125 Ω·mm²/m at 20°C – suitable for electrical components in high-heat areas
  • Propiedades magnéticas: Slightly magnetic at room temperature (loses magnetism above 427°C/800°F) – works for most industrial needs

1.3 Propiedades mecánicas

GH4169’s strength shines at high temperatures, thanks to its unique heat treatment. All values below are for theage-hardened (tratado térmicamente) version:

PropiedadValor (Room Temperature)Value at 650°C
Resistencia a la tracciónMin 1310 MPa (190 ksi)860 MPa (125 ksi)
Yield StrengthMin 1170 MPa (170 ksi)760 MPa (110 ksi)
AlargamientoMin 15% (en 50 milímetros)18% (en 50 milímetros)
DurezaMin 380 media pensión (Brinell)N / A
Fatigue Resistance550 MPa (10⁷ cycles)310 MPa (10⁷ cycles)
Resistencia a la fluenciaMaintains strength up to 650°C (1200°F) – no deformation under long-term heat

1.4 Other Properties

  • Resistencia a la corrosión: Excellent in oxidizing environments (p.ej., aire, vapor) and mild acids – outperforms stainless steel at high temps.
  • Resistencia a la oxidación: Resists scaling in air up to 815°C (1500°F) for long periods – ideal for turbine blades and exhaust parts.
  • Stress Corrosion Cracking (SCC) Resistance: Resists SCC in chloride-rich solutions (a common issue for 316 acero inoxidable).
  • Pitting Resistance: Good resistance to pitting in salty or acidic brines (suitable for marine gas turbines).
  • Hot/Cold Working Properties: Easy to hot forge (at 980–1120°C) – cold working is possible (p.ej., doblando, estampado) and even improves strength.

2. Applications of GH4169 Superalloy

GH4169’s mix of high-temperature strength and workability makes it perfect for demanding industries. Here are its most common uses, con ejemplos del mundo real:

2.1 Componentes aeroespaciales & Jet Engine Parts

  • Caso de uso: A Chinese aerospace manufacturer uses GH4169 for jet engine turbine disks. The disks handle 650°C temperatures and high rotational stress—they’ve lasted 10,000 flight hours, en comparación con 6,000 hours for stainless steel disks.
  • Other Uses: Combustion chambers, ejes del motor, and aircraft fasteners.

2.2 Gas Turbine Components

  • Caso de uso: A power plant in Saudi Arabia uses GH4169 for industrial gas turbine blades. The blades operate at 700°C—they’ve run for 6 years without wear, vs. 3 years for Inconel 625 blades.

2.3 Missile Components

  • Caso de uso: A defense contractor uses GH4169 for missile engine casings. The alloy resists the extreme heat of rocket fuel combustion (up to 1200°C for short bursts) and maintains structural integrity.

2.4 Automotive Turbochargers

  • Caso de uso: A luxury car brand uses GH4169 for high-performance turbocharger rotors. The rotors handle 700°C exhaust heat—they last 4x longer than aluminum rotors and improve fuel efficiency by 12%.

2.5 High-Temperature Furnace Components

  • Caso de uso: A metal processing plant in Germany uses GH4169 for furnace retorts (used to heat-treat metals). The retorts operate at 800°C—they’ve lasted 5 años, vs. 2 years for Hastelloy C22 retorts.

3. Manufacturing Techniques for GH4169 Superalloy

To maximize GH4169’s performance, manufacturers use specialized methods tailored to its properties:

  1. Fundición: Investment casting (using a wax mold) is ideal for complex shapes like turbine blades. The low sulfur content prevents defects during casting.
  2. Forja: Hot forging (at 980–1120°C) shapes the alloy into strong parts like turbine disks. Forging improves grain structure, boosting creep resistance.
  3. Soldadura: Gas Tungsten Arc Welding (GTAW) is recommended. Use matching filler metals (p.ej., ERNiFeCr-2) to maintain strength and corrosion resistance. Pre-weld annealing (at 980°C) reduces cracking risk.
  4. Mecanizado: Use carbide tools with sharp edges. Add coolant (p.ej., mineral oil) to prevent overheating—GH4169 work-hardens quickly, so moderate cutting speeds are needed.
  5. Tratamiento térmico (Critical for Strength):
    • Recocido de solución: Heat to 950–1050°C, cool rapidly (air or water) – softens the alloy for forming.
    • Age Hardening: Heat to 720°C for 8 horas, cool to 620°C, hold for 8 horas (double aging) – forms strengthening phases for maximum strength.
  6. Tratamiento superficial: Shot peening (blasting with small metal balls) enhances fatigue resistance. Pasivación (using nitric acid) improves pitting resistance—no painting is needed.

4. Estudio de caso: GH4169 in Jet Engine Turbine Disks

An aerospace company needed to upgrade turbine disks for a commercial jet engine. The old disks (made of Inconel 625) failed after 6,000 flight hours due to creep deformation at 650°C.

They switched to GH4169 disks. Here’s the result:

  • Lifespan: The disks have lasted 10,000 flight hours with no creep or cracking.
  • Ahorro de costos: Replacement costs dropped by 35% (fewer frequent disk changes).
  • Actuación: The disks’ higher strength allowed the engine to run at 30°C hotter, improving thrust by 5% and fuel efficiency by 4%.

This case proves why GH4169 is the top choice for high-stress, high-temperature aerospace parts.

5. Comparative with Other Materials

How does GH4169 superalloy stack up against other common high-temperature materials? The table below compares key properties:

MaterialMax Service Temp (°C)Resistencia a la tracción (MPa, RT)Resistencia a la fluencia (650°C)Costo (Relative)
GH41696501310ExcelenteAlto
Acero inoxidable 316870515PobreBajo
Titanium Alloy Ti-6Al-4V400860Justomuy alto
Inconel 625980930Very GoodAlto
Hastelloy X1090700BienAlto
Monel 400480550PobreMedio
Acero carbono425400Very PoorMuy bajo

Key Takeaways:

  • GH4169 outperforms all other materials in tensile strength and creep resistance at 650°C—critical for long-life turbine parts.
  • It’s more affordable than titanium alloys and offers better strength than Inconel 625 (though Inconel 625 works at higher temps).
  • Stainless steel and Monel 400 can’t match GH4169’s performance for high-stress, aplicaciones de alta temperatura.

La perspectiva de la tecnología Yigu

En Yigu Tecnología, we recommend GH4169 superalloy for clients in aerospace, energía, y defensa. Its exceptional strength, resistencia a la fluencia, and workability make it a reliable choice for jet engines, turbinas de gas, and turbochargers. Our team provides custom forging, mecanizado, and heat treatment for GH4169 components, ensuring they meet strict industry standards. For projects needing long-term durability in high-stress, moderate-temperature environments, GH4169 delivers unmatched value and performance.

Preguntas frecuentes

1. Can GH4169 superalloy handle temperatures above 650°C?

It can handle short bursts of higher temperatures (up to 760°C) but is designed for long-term use at 650°C. Beyond that, creep deformation may occur—for temps above 800°C, Hastelloy X or Inconel 625 es una mejor opción.

2. Is GH4169 suitable for marine gas turbines?

Sí! Its goodpitting resistance and saltwater corrosion protection make it ideal for marine gas turbines—outperforming stainless steel and even some Hastelloy alloys in coastal environments.

3. What’s the typical lifespan of GH4169 parts in jet engines?

In jet engine turbine disks or blades, GH4169 parts last 10,000–15,000 flight hours—2–3 times longer than Inconel 625 regiones. Proper maintenance (like regular inspections) can extend this lifespan even further.

Índice
Desplazarse hacia arriba