EN 18NiCrMo14-6 Acero de cementación: Propiedades, Usos & Fabricación

fabricación de piezas metálicas a medida

Si trabajas en industrias como la automotriz., aeroespacial, o maquinaria pesada, Necesitas acero que equilibre un duro, Superficie resistente al desgaste con un núcleo resistente. Acero de cementación EN 18NiCrMo14-6: una aleación estándar europea rica en níquel, cromo, y molibdeno, ofrece exactamente eso. Esta guía desglosa sus propiedades clave., aplicaciones del mundo real, proceso de fabricación, y cómo se compara con otros […]

Si trabajas en industrias como la automotriz., aeroespacial, o maquinaria pesada, Necesitas acero que equilibre un duro, wear-resistant surface with a tough core.EN 18NiCrMo14-6 case hardening steel—a European-standard alloy rich in nickel, cromo, y molibdeno, ofrece exactamente eso. Esta guía desglosa sus propiedades clave., aplicaciones del mundo real, proceso de fabricación, y cómo se compara con otros materiales, helping you choose the right steel for high-stress, wear-prone parts.

1. Material Properties of EN 18NiCrMo14-6 Case Hardening Steel

EN 18NiCrMo14-6’s unique alloy composition (especially high nickel and molybdenum) makes it ideal for case hardening. Let’s explore its properties in detail.

1.1 Composición química

EN 18NiCrMo14-6 follows strict European standards (EN 10084), ensuring consistent performance for case hardening. Below is its typical chemical makeup:

ElementSymbolContent Range (%)Key Role
Carbon (do)do0.15 – 0.21Low enough for ductile core; reacts with carburizing to form hard surface
Níquel (En)En3.00 – 3.50Boosts core toughness and fatigue resistance
Chromium (cr)cr1.40 – 1.70Improves hardenability and surface wear resistance
Molibdeno (Mes)Mes0.45 – 0.55Enhances high-temperature strength and prevents temper brittleness
Manganese (Mn)Mn0.50 – 0.80Increases workability and tensile strength
Silicio (Y)Y0.15 – 0.35Aids deoxidation during steelmaking
Sulfur (S)S≤ 0.035Controlled to avoid brittleness
Phosphorus (PAG)PAG≤ 0.035Minimized to prevent cracking
Cobre (Cu)Cu≤ 0.30Trace element with no major performance impact

1.2 Physical Properties

These properties describe how EN 18NiCrMo14-6 behaves under physical conditions like temperature and magnetism:

  • Densidad: 7.85 gramos/cm³ (same as most nickel-chromium-molybdenum steels)
  • Punto de fusión: 1,420 – 1,460 °C (2,588 – 2,660 °F)
  • Conductividad térmica: 44.0 W/(m·K) en 20 °C (room temperature)
  • Coeficiente de expansión térmica: 11.8 × 10⁻⁶/°C (de 20 – 100 °C)
  • Propiedades magnéticas: Ferromagnetic (attracts magnets), useful for sorting and non-destructive testing.

1.3 Propiedades mecánicas

Mechanical properties of EN 18NiCrMo14-6 depend on case hardening (carburación + temple + templado). Below are typical values for thesuperficie (case) ycentro:

PropiedadMeasurement MethodSurface (Caso) ValorCore Value
Dureza (Rockwell)CDH58 – 62 CDH30 – 35 CDH
Dureza (Vickers)HV550 – 600 HV280 – 320 HV
Resistencia a la tracciónMPa 900 MPa
Yield StrengthMPa 650 MPa
Alargamiento% (en 50 milímetros) 15%
Impact ToughnessJ (en 20 °C) 60 J
Fatigue LimitMPa (rotating beam) 450 MPa

1.4 Other Properties

EN 18NiCrMo14-6’s standout properties make it perfect for case-hardened parts:

  • Case Hardening Depth: Típicamente 0.8 – 2.0 milímetros (adjustable via carburizing time/temperature) — enough for wear-prone surfaces like gear teeth.
  • Resistencia al desgaste: Hard surface (from carburizing) resists abrasion, while the tough core absorbs impact.
  • Fatigue Resistance: Nickel and molybdenum improve resistance to repeated loads—critical for gears and shafts.
  • Hardenability: Excellent—can be case-hardened evenly across large or complex parts (p.ej., ejes).
  • Resistencia a la corrosión: Moderado (better than standard carbon steels); needs coatings (like zinc plating) for wet/harsh environments.
  • Core Hardness: Balanced toughness (30 – 35 CDH) prevents parts from breaking under impact.

2. Applications of EN 18NiCrMo14-6 Case Hardening Steel

EN 18NiCrMo14-6’s hard surface and tough core make it ideal for parts that face both wear and impact. Here are its key uses:

  • Engranajes: El #1 application—including automotive transmission gears, industrial gearbox gears, and aerospace engine gears (where wear and torque meet).
  • Ejes: Drive shafts in trucks, maquinaria industrial, and turbines (needing a hard outer layer to resist wear and a tough core to handle torque).
  • Ejes: Automotive axles (especially heavy-duty trucks) and agricultural machinery axles—absorbing impact while resisting wear.
  • Pinions: Small gears in gearboxes or steering systems (relying on precise case hardening for smooth operation).
  • Componentes automotrices: Clutch hubs, árboles de levas, and differential parts—high-stress parts needing wear resistance.
  • Maquinaria Industrial: Conveyor drive gears, ejes de bomba, and compressor components—operating under long hours and heavy loads.
  • Componentes aeroespaciales: Landing gear shafts and engine accessory gears (where reliability and weight balance matter).
  • Agricultural Machinery: Tractor gearboxes and harvester shafts—handling dusty, high-impact conditions.
  • Mining Equipment: Crusher gears and conveyor shafts—resisting abrasion from rocks and heavy loads.

3. Manufacturing Techniques for EN 18NiCrMo14-6

Producing EN 18NiCrMo14-6 requires precise steps to achieve the perfect case-hardened finish. Here’s the typical process:

  1. Steelmaking:
    • Most EN 18NiCrMo14-6 is made using an Electric Arc Furnace (EAF) with vacuum degassing. This removes impurities and ensures precise control of alloy elements (especially nickel and molybdenum) to meet EN 10084 estándares.
  2. Laminación:
    • After steelmaking, the metal is Hot Rolled (en 1,150 – 1,250 °C) into billets, verja, or sheets. For precision parts, it’s then Cold Rolled (room temperature) to improve surface finish and dimensional accuracy.
  3. Precision Forging:
    • Partes complejas (like gears or shafts) are forged into near-final shapes at high temperatures. This refines the grain structure, enhancing core toughness—critical for high-stress applications.
  4. Mecanizado (Pre-Carburizing):
    • Forged parts are machined to near-final dimensions using Torneado (for cylindrical shapes like shafts) o Molienda (for gears). A small tolerance (0.1 – 0.2 milímetros) is left for post-heat treatment grinding.
  5. Tratamiento térmico (Case Hardening):
    • The most critical step—creating a hard surface and tough core:
      • Carburación: Heat the part to 880 – 930 °C in a carbon-rich atmosphere (natural gas or propane) para 4 – 12 horas. Carbon diffuses into the surface (0.8 – 2.0 mm de profundidad) to raise carbon content to 0.8 – 1.0%.
      • Temple: Rapidly cool the part in oil or high-pressure gas to harden the carbon-rich surface.
      • Tempering: Reheat to 180 – 220 °C to reduce brittleness while maintaining surface hardness.
  6. Mecanizado (Post-Carburizing):
    • Parts are Ground to final dimensions (removing the small pre-carburizing tolerance). This ensures ultra-smooth surfaces (critical for gear teeth) y tolerancias estrictas (±0,005 mm).
  7. Tratamiento superficial:
    • Optional steps to enhance performance:
      • Nitriding: Adds a thin, extra-hard layer (if even higher wear resistance is needed).
      • Blackening: Forms a protective oxide layer to prevent minor rust.
      • Revestimiento: Zinc plating or powder coating for corrosion resistance in wet environments.
  8. Control de calidad:
    • Rigorous testing ensures quality:
      • Chemical analysis: Verify alloy content via spectrometry.
      • Case hardening depth test: Measure surface carbon penetration (using microhardness testing).
      • Hardness testing: Check surface (CDH) and core (CDH) dureza.
      • Non-destructive testing: Ultrasonic testing for internal cracks; magnetic particle testing for surface defects.
      • Dimensional inspection: Use CMMs (Máquinas de medición de coordenadas) para comprobar las tolerancias.

4. Estudios de caso: EN 18NiCrMo14-6 in Action

Real-world examples show how EN 18NiCrMo14-6 solves industry challenges.

Estudio de caso 1: Automotive Gear Failure Analysis

A heavy-duty truck manufacturer faced frequent gear failures in their transmission (lasting only 150,000 km). The original gears used a low-nickel case hardening steel, which had a brittle core and uneven case depth. Switching to EN 18NiCrMo14-6 gears (with controlled carburizing to 1.2 mm case depth) extended gear life to 400,000 km. This reduced warranty claims by 80% y salvado $500,000 anualmente.

Estudio de caso 2: Mining Equipment Pinion Optimization

A mining company struggled with pinion failures in their crusher (cada 3 meses) due to abrasion and impact. They replaced the existing steel with EN 18NiCrMo14-6 pinions, paired with nitriding surface treatment. Post-switch, pinion life increased to 12 meses, reducir el tiempo de inactividad por mantenimiento 75% and replacement costs by 60%.

5. EN 18NiCrMo14-6 vs. Other Materials

How does EN 18NiCrMo14-6 compare to other case hardening steels and materials? The table below breaks it down:

MaterialSimilarities to EN 18NiCrMo14-6Diferencias claveMejor para
AISI 52100Grado de rodamiento; ferromagneticNo nickel; not case-hardened (through-hardened); brittle coreStandard bearings (not gears/shafts)
JIS SUJ2Carbon-chromium alloy; resistente al desgasteNo nickel; through-hardened; lower toughnessJapanese automotive bearings
GCr15Grado de rodamiento; carbon-chromiumNo nickel; through-hardened; poor impact resistanceChinese industrial bearings
100Cr6European standard; through-hardenedNo nickel; brittle core; not for case hardeningLight-duty bearings
EN 100CrMo7Chromium-molybdenum alloy; resistente al desgasteLow nickel; through-hardened; lower core toughnessHeavy-duty bearings (not gears)
AISI M50High-temperature strengthNo nickel; through-hardened; for high-speed bearingsAerospace turbine bearings
Acero inoxidable (AISI 416)Resistente a la corrosiónLower surface hardness; more expensive; weaker coreFood processing gears (wet environments)
Ceramic Components (Al₂O₃)Resistente al desgasteFrágil (no impact resistance); very expensiveAlta precisión, low-impact parts (not gears)
Componentes de plástico (PA66)Resistente a la corrosiónLow strength; no high-load useLight-duty, low-speed parts (p.ej., engranajes de juguete)

Yigu Technology’s Perspective on EN 18NiCrMo14-6

En Yigu Tecnología, EN 18NiCrMo14-6 is our top choice for clients needing case-hardened parts like gears and shafts. Its nickel-molybdenum blend delivers the perfect balance of surface wear resistance and core toughness—critical for heavy automotive and mining applications. We use precise carburizing (controlling depth to ±0.1 mm) and post-heat treatment grinding to ensure parts meet tight tolerances. For clients in harsh environments, we add nitriding or zinc plating, making EN 18NiCrMo14-6 parts last 2–3x longer than standard case hardening steels.

FAQ About EN 18NiCrMo14-6 Case Hardening Steel

  1. What is the ideal case hardening depth for EN 18NiCrMo14-6?
    It depends on the application: 0.8 – 1.2 mm for gears (balanced wear and flexibility), 1.5 – 2.0 mm for shafts/axles (higher wear resistance), and can be adjusted via carburizing time and temperature.
  2. Can EN 18NiCrMo14-6 be used in corrosive environments?
    It has moderate corrosion resistance. For wet or chemical-rich environments (p.ej., marine or food processing), apply zinc plating or powder coating to prevent rust and extend service life.
  3. How does EN 18NiCrMo14-6 differ from through-hardened steels like AISI 52100?
    EN 18NiCrMo14-6 is case-hardened (hard surface, tough core) for wear + resistencia al impacto, making it ideal for gears/shafts. AISI 52100 is through-hardened (uniformly hard, brittle core), better suited for bearings that don’t face heavy impact.
Índice
Desplazarse hacia arriba