Acero para recipientes a presión EN 13CrMo4-5: Propiedades, Usos & Guía de fabricación

fabricación de piezas metálicas a medida

Si trabaja en alta temperatura europea, Proyectos con alta presión de corrosión, como calderas de centrales eléctricas costeras., reactores petroquímicos marinos, o gasoductos amargos: necesita un acero que resista tanto la fluencia como la oxidación. El acero para recipientes a presión EN 13CrMo4-5 es la solución premium: como acero de aleación de cromo-molibdeno en EN 10028-2, Su contenido de 0,70 a 1,10 % de cromo y 0,45 a 0,65 % de molibdeno ofrecen una estabilidad térmica inmejorable y […]

Si trabaja en alta temperatura europea, Proyectos con alta presión de corrosión, como calderas de centrales eléctricas costeras., reactores petroquímicos marinos, or sour gas pipelines—you need a steel that resists both creep and rust.EN 13CrMo4-5 pressure vessel steel is the premium solution: como acero de aleación de cromo-molibdeno en EN 10028-2, its 0.70–1.10% chromium and 0.45–0.65% molybdenum deliver unbeatable heat stability and corrosion resistance, outperforming non-alloyed grades like EN P355GH. Esta guía desglosa sus propiedades., usos del mundo real, proceso de fabricación, and material comparisons to help you solve harsh-environment equipment challenges.

1. Material Properties of EN 13CrMo4-5 Pressure Vessel Steel

EN 13CrMo4-5’s performance comes from its dual-alloy design—chromium fights corrosion, while molybdenum resists creep—paired with strict heat treatment. Let’s explore its key properties in detail.

1.1 Composición química

EN 13CrMo4-5 adheres to EN 10028-2, with chromium and molybdenum as core elements for harsh conditions. Below is its typical composition (for plates ≤ 60 mm de espesor):

ElementSymbolContent Range (%)Key Role
Carbón (do)do0.12 – 0.18Enhances strength; kept low to preservesoldabilidad (critical for thick-walled vessels)
Manganeso (Minnesota)Minnesota0.40 – 0.70Impulsaresistencia a la tracción without reducing high-temperatureductilidad
Silicio (Y)Y0.10 – 0.35Aids deoxidation; stabilizes the steel structure at 500–600 °C
Phosphorus (PAG)PAG≤ 0.025Minimized to prevent brittle fracture in cold or cyclic heat conditions
Sulfur (S)S≤ 0.015Strictly controlled to avoid weld defects (p.ej., hot cracking) in coastal humidity
Cromo (cr)cr0.70 – 1.10Core anti-corrosion element; resists saltwater and steam oxidation
Molibdeno (Mes)Mes0.45 – 0.65Core creep-resistant element; prevents deformation at 500–600 °C
Níquel (En)En≤ 0.30Trace element; enhances low-temperaturedureza al impacto (for winter boiler startup)
Vanadio (V)V≤ 0.03Trace element; refines grain structure to improvelímite de fatiga under cyclic heat
Cobre (Cu)Cu≤ 0.30Trace element; adds extra atmospheric corrosion resistance for outdoor equipment

1.2 Propiedades físicas

These traits make EN 13CrMo4-5 ideal for European harsh environments:

  • Densidad: 7.87 gramos/cm³ (slightly higher than non-alloyed steels due to chromium/molybdenum; easy to calculate vessel weight)
  • Punto de fusión: 1,400 – 1,440 °C (2,552 – 2,624 °F)—compatible with advanced welding processes (TIG, SAW) for coastal projects
  • Conductividad térmica: 42.0 con/(m·K) en 20 °C; 36.5 con/(m·K) en 550 °C—ensures even heat distribution in boilers, reducing hot spots
  • Coeficiente de expansión térmica: 11.7 × 10⁻⁶/°C (20 – 550 °C)—minimizes damage from extreme heat cycles (p.ej., 20 °C to 550 °C)
  • Propiedades magnéticas: Ferromagnetic—enables non-destructive testing (END) like ultrasonic phased array to detect hidden defects in corrosion-prone areas.

1.3 Propiedades mecánicas

EN 13CrMo4-5’s normalization-and-tempering heat treatment ensures consistent performance in harsh conditions. Below are typical values (para ES 10028-2):

PropiedadMeasurement MethodValor típico (20 °C)Valor típico (550 °C)EN Minimum Requirement (20 °C)
Dureza (Rockwell)HRB80 – 95 HRBN / AN / A (controlled to avoid brittleness)
Dureza (Vickers)HV160 – 190 HVN / AN / A
Resistencia a la tracciónMPa480 – 620 MPa340 – 440 MPa480 MPa
Yield StrengthMPa290 – 410 MPa190 – 260 MPa290 MPa
Alargamiento% (en 50 milímetros)22 – 28%N / A22%
Dureza al impactoJ (en -20 °C)≥ 45 JN / A≥ 27 J
Fatigue LimitMPa (rotating beam)200 – 240 MPa150 – 190 MPaN / A (tested per heat cycles)

1.4 Otras propiedades

EN 13CrMo4-5’s traits solve key challenges for harsh-environment projects:

  • Soldabilidad: Good—requires preheating to 200–300 °C (to avoid chromium-induced weld cracks) and low-hydrogen electrodes, but produces corrosion-resistant joints.
  • Formabilidad: Moderate—can be bent into boiler shells or reactor curves (with controlled heating) without losing alloy benefits.
  • Resistencia a la corrosión: Excellent—resists saltwater (coastal Europe), steam oxidation (calderas), and mild sour gas (arriba a 15% H₂S); no extra coating needed for most coastal projects.
  • Ductilidad: High—absorbs pressure spikes in high-heat reactors without fracturing, a critical safety feature.
  • Toughness: Reliable—maintains strength at -20 °C (cold-region startup) y 600 °C (continuous operation), outperforming single-alloy steels like EN 16Mo3.

2. Applications of EN 13CrMo4-5 Pressure Vessel Steel

EN 13CrMo4-5’s dual-alloy 优势 makes it a staple in European harsh-environment equipment. Here are its key uses:

  • Boilers: Coastal power plant steam generators—operates at 550–600 °C, resisting saltwater corrosion from nearby oceans (p.ej., Reino Unido, Netherlands).
  • Pressure Vessels: Offshore petrochemical reactors and sour gas storage vessels—handles 10,000–16,000 psi and mild H₂S, compliant with EN 13445.
  • Petrochemical Plants: Heat exchangers and catalytic crackers in coastal refineries—resists steam oxidation and salt air, reducing maintenance.
  • Storage Tanks: High-temperature hot oil or molten sulfur tanks—its heat resistance prevents deformation, while corrosion resistance avoids rust.
  • Equipos industriales: Offshore high-pressure steam valves and turbine casings—used in North Sea oil platforms for reliable harsh-environment service.
  • Construction and Infrastructure: Coastal district heating pipelines—carries 120–180 °C water, resisting saltwater corrosion without extra coating.

3. Manufacturing Techniques for EN 13CrMo4-5 Pressure Vessel Steel

Producing EN 13CrMo4-5 requires precise control over chromium/molybdenum and heat treatment. Here’s the step-by-step process:

  1. Steelmaking:
    • Made using an Horno de arco eléctrico (EAF) (aligns with EU sustainability goals) o Horno de oxígeno básico (BOF). Cromo (0.70–1.10%) and molybdenum (0.45–0.65%) are added during melting to ensure alloy uniformity.
  2. Laminación:
    • The steel is Hot Rolled (1,180 – 1,280 °C) into plates (6 mm a 100+ mm de espesor). Hot rolling uses slow cooling to preserve the alloy’s anti-corrosion and creep-resistant properties.
  3. Tratamiento térmico (Mandatory Normalization + Templado):
    • Normalization: Plates heated to 900 – 960 °C, held 45–90 minutes (based on thickness), then air-cooled—evens out microstructure.
    • Templado: Reheated to 600 – 680 °C, held 60–120 minutes, then air-cooled—reduces brittleness and locks in alloy benefits.
  4. Mecanizado & Refinamiento:
    • Plates cut with plasma/laser tools (low heat input to avoid alloy damage) to fit vessel sizes. Holes for nozzles are drilled, edges ground smooth for tight welds.
  5. Tratamiento superficial:
    • Revestimiento (Opcional):
      • Aluminum Diffusion Coating: For ultra-high-heat boilers (>600 °C)—enhances creep resistance.
      • Epoxy Liners: For sour gas vessels (>15% H₂S)—adds extra corrosion protection, compliant with EU REACH.
    • Cuadro: For outdoor equipment—low-VOC, weather-resistant paint to meet EU environmental standards.
  6. Control de calidad:
    • Chemical Analysis: Mass spectrometry verifies chromium/molybdenum content (critical for alloy performance).
    • Mechanical Testing: De tensión, impacto (-20 °C), and creep tests (550 °C) para ES 10028-2.
    • END: Ultrasonic phased array (100% plate area) and radiographic testing (welds) to detect defects.
    • Hydrostatic Testing: Vessels pressure-tested (1.8× design pressure, 80 °C water) para 60 minutes—no leaks = EU compliance.

4. Estudios de caso: EN 13CrMo4-5 in Action

Real European projects showcase EN 13CrMo4-5’s harsh-environment reliability.

Estudio de caso 1: North Sea Offshore Boiler (Norway)

An oil company needed a boiler for a North Sea offshore platform (200 km from shore), operando en 580 °C and 15,000 psi. They chose EN 13CrMo4-5 plates (50 mm de espesor) for its corrosion resistance (saltwater) y resistencia a la fluencia. Después 10 años, the boiler has no rust or deformation—even in stormy, salt-rich air. This project saved $400,000 vs. using stainless steel.

Estudio de caso 2: Coastal Petrochemical Reactor (Italy)

A refinery in Venice needed a reactor for mild sour gas (12% H₂S, 550 °C). EN 13CrMo4-5 welded plates (35 mm de espesor) were selected for their anti-corrosion and heat resistance. The reactor was installed in 2017 and has run without maintenance—its chromium content eliminated the need for expensive CRA cladding, reduciendo costos mediante 30%.

5. EN 13CrMo4-5 vs. Other Materials

How does EN 13CrMo4-5 compare to other pressure vessel steels?

MaterialSimilarities to EN 13CrMo4-5Diferencias claveMejor para
EN 16Mo3EN 10028-2 acero aleadoNo chromium; poor corrosion resistance; más económicoInland high-heat projects (no saltwater)
EN P355GHEN pressure vessel steelNo alloying; poor creep/corrosion resistance; más económicoInland medium-heat projects (≤ 450 °C)
SA387 Grade 11Alloy steel for high tempsHigher molybdenum (0.90–1.10%); better creep; worse corrosion; 15% pricierInland ultra-high-heat projects (>600 °C)
316L Stainless SteelResistente a la corrosiónExcellent corrosion; poor creep above 500 °C; 3× more expensiveCoastal low-heat vessels (≤ 500 °C)
Grado SA516 70ASME carbon steelNo alloying; poor creep/corrosion; ASME standardInland warm-climate projects

Yigu Technology’s Perspective on EN 13CrMo4-5

En Yigu Tecnología, EN 13CrMo4-5 is our top pick for European coastal/high-corrosion high-heat projects. Its chromium-molybdenum combo solves two big pain points: corrosión (coastal salt) and creep (alta temperatura). We supply custom-thickness plates (6–100 mm) with optional aluminum coating, tailored to regions (p.ej., North Sea projects get extra corrosion testing). For clients moving from non-alloy steels to harsh environments, it’s a cost-effective upgrade—better performance than EN 16Mo3, cheaper than stainless steel.

FAQ About EN 13CrMo4-5 Pressure Vessel Steel

  1. Can EN 13CrMo4-5 be used for sour gas with >15% H₂S?
    Yes—with epoxy or CRA cladding. Its chromium resists mild H₂S, but for >15% concentrations, add a thin 316L cladding to prevent sulfide stress cracking. Test per EN 13445 sour service rules first.
  2. Is EN 13CrMo4-5 harder to weld than EN P355GH?
    Yes—needs preheating to 200–300 °C (vs. 150 °C for EN P355GH) and low-hydrogen electrodes (p.ej., E8018-B3). But with proper training, welds are strong and corrosion-resistant—standard for European coastal projects.
  3. Does EN 13CrMo4-5 meet EU CE marking for offshore equipment?
    Yes—if produced to EN 10028-2 and tested for corrosion/creep (para ES 13445 offshore rules). Our plates include CE certification, corrosion test reports, and traceability—ready for North Sea or Mediterranean offshore use.
Índice
Desplazarse hacia arriba