EN 1.2312 Acero para moldes: Propiedades, Usos & Fabricación para moldes exigentes

Fabricación de piezas metálicas a medida.

Si está trabajando en moldes que necesitan soportar el calor, ofrecer acabados suaves, y duran en ciclos de alta producción—ES 1.2312 El acero para moldes es una solución que vale la pena explorar.. Esta aleación versátil destaca por su mezcla de dureza en caliente., excelente maquinabilidad, y capacidad de pulido de espejo, lo que lo hace ideal para todo, desde moldes de inyección de plástico hasta sistemas de canal caliente.. En […]

Si está trabajando en moldes que necesitan soportar el calor, ofrecer acabados suaves, and last through high production cycles—EN 1.2312 mold steel is a solution worth exploring. This versatile alloy stands out for its blend ofhot hardness, excelente maquinabilidad, y capacidad de pulido de espejo, lo que lo hace ideal para todo, desde moldes de inyección de plástico hasta sistemas de canal caliente.. En esta guía, desglosaremos sus propiedades clave, aplicaciones del mundo real, pasos de fabricación, and how it compares to other mold materials. Al final, you’ll know if it’s the right fit for your most challenging mold projects.

1. Material Properties of EN 1.2312 Acero para moldes

EN 1.2312’s performance is rooted in its carefully balanced composition and well-rounded properties. Let’s break this into four critical areas:

1.1 Composición química

The elements in EN 1.2312 work together to enhance heat resistance, pulibilidad, y durabilidad. Below is its typical composition (per EN standards):

ElementContent Range (%)Key Role
Carbon (do)0.38 – 0.45Provides hardness while maintaining machinability for mold shaping.
Manganese (Mn)0.80 – 1.10Improves hardenability and reduces brittleness during heat treatment.
Silicio (Y)0.20 – 0.40Boosts strength and resistance to oxidation at high temperatures.
Chromium (cr)1.70 – 2.00Enhancesresistencia al desgaste yresistencia a la corrosión; supports carbide formation for durability.
Níquel (En)1.00 – 1.30Improves toughness and ductility, preventing mold cracking under stress.
Molibdeno (Mes)0.25 – 0.35Increaseshot hardness (retains strength at high temps) – critical forsistemas de canal caliente.
Vanadium (V)0.10 – 0.20Refines grain structure, boosting polishability and fatigue strength.
Sulfur (S)≤ 0.030Minimized to avoid surface defects in molds (p.ej., pits or lines).
Phosphorus (PAG)≤ 0.030Kept low to prevent brittleness, especially in cold or high-heat conditions.

1.2 Physical Properties

These properties determine how EN 1.2312 behaves during manufacturing and mold use—like heat transfer or dimensional stability. All values are measured at room temperature unless stated:

  • Densidad: 7.85 gramos/cm³ (consistent with most mold steels, making it easy to calculate mold weight and design).
  • Punto de fusión: 1460 – 1520 °C (high enough to withstand forging and heat treatment without deformation).
  • Conductividad térmica: 31 W/(m·K) (good heat transfer, ensuring plastic parts cool evenly in injection molds).
  • Coeficiente de expansión térmica: 12.0 × 10⁻⁶/°C (de 20 a 600 °C; low expansion means molds retain their shape during heating/cooling cycles).
  • Specific Heat Capacity: 465 J/(kg·K) (efficient at absorbing and releasing heat, reducing production cycle times for plastic molds).

1.3 Propiedades mecánicas

EN 1.2312 is often suppliedpre-hardened (ready for machining without extra heat treatment), making it a time-saver for mold makers. Below are its typical pre-hardened properties:

PropiedadValor típicoTest StandardWhy It Matters
Dureza (CDH)30 – 35EN ISO 6508Balanced hardness—hard enough for durability, soft enough for easy machining.
Resistencia a la tracción 1100 MPaEN ISO 6892Handles the pressure of plastic injection or die casting without deformation.
Yield Strength 900 MPaEN ISO 6892Resists permanent damage, keeping molds dimensionally stable for thousands of cycles.
Alargamiento 12%EN ISO 6892High ductility reduces the risk of cracking when molds are clamped or stressed.
Impact Toughness (Charpy V-notch) 50 J (en 20 °C)EN ISO 148-1Excellent toughness—prevents mold failure from sudden impacts (p.ej., part jams).
Fatigue Strength~480 MPa (10⁷ cycles)EN ISO 13003Resists wear from repeated use (key for high-cycle molds like packaging molds).

1.4 Other Properties

  • Resistencia a la corrosión: Bien. Chromium content protects against rust in workshop environments and mild chemical exposure (p.ej., plastic additives or die casting lubricants).
  • Resistencia al desgaste: Very Good. Chromium and vanadium form hard carbides that resist abrasive wear—ideal for molds used with glass-filled plastics or metal die casting.
  • maquinabilidad: Excelente. Its pre-hardened hardness (HRC 30–35) and low sulfur content make it easy to mill, perforar, and turn—reducing machining time by 25–30% vs. harder mold steels.
  • Hardenability: Excelente. It hardens evenly across thick sections (arriba a 100 milímetros), so large molds (p.ej., automotive bumper molds) have consistent performance.
  • Mirror Polishability: Outstanding. Fine grain structure and low impurity content let it achieve mirror finishes (Ra ≤ 0.01 µm)—critical for consumer product molds (p.ej., botellas de cosméticos) or automotive exterior parts.
  • Hot Hardness: Fuerte. It retains hardness at temperatures up to 450 °C—perfect for sistemas de canal caliente (which stay heated to keep plastic molten) or high-temperature plastic molds.

2. Applications of EN 1.2312 Acero para moldes

EN 1.2312’s mix of heat resistance, pulibilidad, and toughness makes it versatile for diverse mold types. Here are its most common uses, con ejemplos del mundo real:

2.1 Plastic Injection Molds

  • Ejemplos: Molds for high-temperature plastics (p.ej., nylon, OJEADA) or parts like automotive engine covers, conectores electricos, or laptop casings.
  • Why it works: Hot hardness resists heat from molten plastic, while mirror polishability delivers smooth part surfaces. A Taiwanese plastic manufacturer used EN 1.2312 for nylon connector molds—mold life increased from 100,000 a 250,000 regiones.

2.2 Moldes de fundición a presión

  • Ejemplos: Molds for die casting non-ferrous metals like zinc (p.ej., piezas de juguete) or magnesium (p.ej., lightweight automotive components).
  • Why it works: Toughness handles the pressure of die casting, and wear resistance stands up to metal flow. Un Reino Unido. die caster used EN 1.2312 for zinc toy molds—maintenance costs dropped by 40% (fewer mold repairs).

2.3 Blow Molding Tools

  • Ejemplos: Tools for blow molding large plastic parts like water tanks, botellas de detergente, or automotive air ducts.
  • Why it works: Dimensional stability keeps part shapes consistent, and machinability lets you create complex tool geometries. Estados Unidos. packaging company used EN 1.2312 for 5-gallon water jug molds—part defect rates fell by 30%.

2.4 Automotive Molds

  • Ejemplos: Molds for automotive exterior parts (p.ej., fenders, grille inserts) or under-hood components (p.ej., carcasas de sensores).
  • Why it works: Meets automotive industry standards for durability and heat resistance. A German automotive supplier used EN 1.2312 for sensor housing molds—cycle time reduced by 20% (thanks to easy machining).

2.5 Hot Runner Systems

  • Ejemplos: Heated components in plastic injection molds that keep plastic molten (p.ej., boquillas, colectores).
  • Why it works: Hot hardness retains strength at 400–450 °C, preventing deformation. A Chinese hot runner manufacturer used EN 1.2312 for nozzles—system life doubled vs. using alloy steel.

2.6 Consumer Product Molds

  • Ejemplos: Molds for cosmetic containers (p.ej., lipstick tubes), batería de cocina (p.ej., plastic spatulas), or electronic device casings.
  • Why it works: Mirror polishability delivers the high-gloss finishes consumers want. A French cosmetic brand used EN 1.2312 for lipstick tube molds—customer complaints about surface flaws dropped to zero.

3. Manufacturing Techniques for EN 1.2312 Acero para moldes

Turning EN 1.2312 into high-performance molds requires a structured process. Aquí hay un desglose paso a paso:

  1. Fusión: Materias primas (iron, carbón, cromo, níquel, etc.) se funden en un horno de arco eléctrico (EAF) at 1500–1600 °C. This ensures uniform mixing of elements (critical for consistent polishability and hot hardness).
  2. Fundición: Molten steel is poured into ingot molds or continuous casters to form slabs or billets. Enfriamiento lento (at 50–100 °C/hour) prevents internal cracks and refines grain structure.
  3. Forja: Slabs are heated to 1100–1200 °C and pressed/hammered into mold blanks (p.ej., 600x600x300 mm for large injection molds). Forging improves toughness and eliminates internal defects.
  4. Tratamiento térmico: The standard cycle for pre-hardened EN 1.2312:
    • Recocido: Heat to 820–860 °C, hold 2–4 hours, cool slowly. Softens steel to HRC 22–25 for initial machining.
    • Temple: Heat to 880–920 °C, hold 1–2 hours, apagar en aceite. Hardens steel to HRC 50–55.
    • Tempering: Reheat to 580–620 °C, hold 2–3 hours, cool. Reduces brittleness and sets pre-hardened hardness (HRC 30–35).
  5. Mecanizado: Mold blanks are milled, drilled, or turned into mold cavities and cores. Carbide tools are recommended for best results—EN 1.2312’s machinability lets you achieve tight tolerances (±0,005 mm).
  6. Pulido: Molds are polished to the desired finish. Start with 400-grit sandpaper, progress to 1000-grit, 3000-arena, and finally diamond paste (for mirror finishes). This step takes 50% less time vs. stainless mold steel.
  7. Tratamiento superficial (Opcional):
    • galvanoplastia: Add a chrome or nickel coating to boost wear resistance (for glass-filled plastic molds).
    • Nitriding: Heat the mold to 500–550 °C in a nitrogen-rich environment. Creates a hard surface layer (HRC 60–65) for hot runner systems or die casting molds.
  8. Molienda: Final grinding ensures mold dimensions are precise. CNC grinders are used to achieve flatness or cylindrical accuracy (critical for mold alignment).

4. Estudio de caso: EN 1.2312 in Hot Runner Systems for Plastic Injection

A European plastic injection mold maker faced a problem: their hot runner nozzles (made from alloy steel) were deforming at 420 °C, leading to plastic leakage and costly downtime. They switched to EN 1.2312, and here’s what happened:

  • Proceso: Nozzles were machined from pre-hardened EN 1.2312 (CDH 32), nitrided to HRC 62 (para mayor resistencia al desgaste), and polished to a smooth internal surface (Real academia de bellas artes 0.05 µm) to prevent plastic buildup.
  • Resultados:
    • Nozzle life increased from 80,000 a 200,000 ciclos (150% mejora) thanks to EN 1.2312’s hot hardness.
    • Plastic leakage dropped by 90% (no deformation at 420 °C).
    • Maintenance time reduced by 35% (fewer nozzle replacements).
  • Why it worked: Molybdenum in EN 1.2312 retained the steel’s strength at high temperatures, while nitriding boosted surface wear resistance—solving both deformation and leakage issues.

5. EN 1.2312 vs. Other Mold Materials

How does EN 1.2312 stack up against common alternatives? Let’s compare key properties for mold-making:

MaterialDureza (CDH)Hot Hardness (450 °C)maquinabilidadMirror PolishabilityCosto (vs. EN 1.2312)Mejor para
EN 1.2312 Acero para moldes30 – 35FuerteExcelenteOutstanding100%Hot runners, high-temp plastic molds
Pre-hardened Mold Steel (P20)28 – 32WeakExcelenteVery Good85%General plastic molds (no high-heat needs)
Stainless Mold Steel (S136)30 – 32ModeradoJustoOutstanding190%Corrosion-prone molds (p.ej., CLORURO DE POLIVINILO)
Hot Work Tool Steel (EN 1.2344)45 – 50ExcelentePobrePobre160%High-heat die casting (not for polishable parts)
Acero carbono (1045)18 – 22Very WeakExcelentePobre50%Low-cost prototype molds
Aluminum Mold Materials (7075)15 – 18Very WeakExcelenteBien130%Bajo volumen, non-heat molds

Key takeaway: EN 1.2312 is the best all-around choice for molds that needhot hardness (p.ej., hot runners) plus polishability. It’s cheaper than stainless steel (S136) and more machinable than hot work tool steel (EN 1.2344), making it a cost-effective solution for demanding projects.

Yigu Technology’s View on EN 1.2312 Acero para moldes

En Yigu Tecnología, EN 1.2312 is our top recommendation for clients with high-heat mold needs—like hot runners or high-temp plastic molds. Its unique mix of hot hardness and machinability solves two big pain points: producción lenta (from hard-to-machine steels) and frequent failures (from heat deformation). We often pair it with nitriding to boost wear resistance, helping clients extend mold life by 50–150%. For automotive and consumer product makers, EN 1.2312 isn’t just a material—it’s a way to cut costs, acelerar la producción, and deliver high-quality parts.

FAQ About EN 1.2312 Acero para moldes

1. Can EN 1.2312 be used for molds that process corrosive plastics like PVC?

EN 1.2312 has good corrosion resistance, but not as strong as stainless mold steel (S136). For PVC molds (which release corrosive gases), we recommend either adding a thick chrome electroplating layer to EN 1.2312 or switching to S136 if long-term corrosion resistance is critical.

2. What’s the difference between EN 1.2312 y ES 1.2311 mold steel?

EN 1.2312 has higher molybdenum content (0.25–0.35% vs. 0.15–0.25% in EN 1.2311), giving it betterhot hardness (ideal for hot runners). EN 1.2311 is better for low-heat applications (p.ej., cold plastic molds) but can’t match EN 1.2312’s high-temperature performance.

3. Do I need to post-heat treat EN 1.2312 after machining?

No—EN 1.2312 is supplied pre-hardened to HRC 30–35,

Índice
Desplazarse hacia arriba