En la fabricación moderna, why do aerospace engineers choose 5-Máquinas CNC del eje while a small workshop uses 3-axis models? The answer lies in understanding the classifications of CNC machining—a framework that groups CNC systems by their capabilities, procesos, y casos de uso. Choosing the wrong category leads to wasted costs, producción lenta, or failed parts. This article breaks down the 6 core classifications of CNC machining, sus características clave, Aplicaciones del mundo real, and selection tips, helping you match the right CNC solution to your project needs.
What Are the Core Classifications of CNC Machining?
Mecanizado CNC (Computer Numerical Control machining) uses automated systems to shape materials, but not all CNC setups are the same. The industry classifies CNC machining based on 6 factores críticos: processing technology, machine tool movement, automation degree, number of axes (degrees of freedom), application field, and special functional designs. Each classification solves unique manufacturing challenges—for example, metal cutting CNC machines handle shafts and gears, while laser cutting systems process non-metallic materials like glass.
1. Classification by Processing Technology
This category groups CNC machining by the type of material and the method used to shape it. It’s the most fundamental classification, as it directly ties to the material you’re working with. The table below details the two main subcategories and their key methods:
Processing Category | Key Methods | Compatibilidad de material | Aplicaciones ideales |
Metal Cutting Processing | – Torneado: Shapes rotating workpieces (P.EJ., ejes) to create outer circles, end faces. – Molienda: Corta formas complejas (ranura, agujeros) with rotating tools. – Aburrido: Expands existing holes for higher accuracy. – Perforación: Creates through/blind holes with drill bits. – Repente: Finishes drilled holes to improve surface smoothness. – Ritmo: Adds internal threads to holes. | Ferrous metals (acero, hierro), metales no ferrosos (aluminio, cobre, titanio). | – Torneado: Automotive engine shafts, pedales de bicicleta. – Molienda: Cavidades de moho, laptop chassis. – Perforación: Electronic enclosure mounting holes. |
Non-Metallic Material Processing | – Corte con láser: Uses high-energy lasers to melt/vaporize materials. – Corte de chorro de agua: Cuts with high-velocity water (plus abrasives for hard materials). – Mecanizado de descarga eléctrica (electroerosión): Removes material via electrode-workpiece discharge (for conductive materials). – Ultrasonic Machining: Uses high-frequency vibrations + abrasives to shape brittle materials. | Plástica (Abdominales, OJEADA), vaso, cerámica, compuestos (fibra de carbono). | – Corte con láser: Acrylic signage, plastic packaging. – Corte de chorro de agua: Stone countertops, glass panels. – electroerosión: Carbide tooling, insertos de molde. – Ultrasonic Machining: Ceramic medical implants, glass lenses. |
2. Classification by Machine Tool Movement Mode
This classification focuses on how the CNC machine’s tool and workpiece move relative to each other. It determines the complexity of shapes you can produce—from simple holes to curved aerospace parts.
Movement Mode | Key Capabilities | Nivel de precisión | Aplicaciones ideales |
Point Control Machines | Only controls tool position (no continuous path); moves directly from one point to another. | ± 0.01 mm (position accuracy); no path control. | Drilling machines (hole positioning), boring machines (single-hole expansion). |
Linear Control Machines | Moves tool along straight paths (incógnita, Y, Z hachas z) while cutting; supports constant feed rates. | ± 0.005 mm (linear accuracy); uniform surface finish. | Simple milling machines (flat surface cutting), tornos (straight shaft turning). |
Contour Control Machines | Moves tool along complex curved trajectories (P.EJ., circles, parabolas); supports multi-axis linkage. | ± 0.003 mm (contour accuracy); handles 3D shapes. | Multi-axis machining centers (aerospace wing parts), mold-making machines (curved cavities). |
3. Classification by Degree of Automation
Automation level dictates how much human intervention is needed—critical for production volume and labor costs.
Nivel de automatización | Características clave | Labor Requirement | Ideal Production Scale |
Semi-Automatic CNC Machines | Automates cutting/machining but needs manual steps (P.EJ., workpiece clamping, Cambios de herramientas). | 1 operator per machine; constant supervision for manual tasks. | Lotes pequeños (10–50 partes), custom prototypes (P.EJ., one-off mold inserts). |
Fully Automatic CNC Machines | Handles the entire process automatically: auto loading/unloading, auto tool change, auto quality checks. | 1 operator manages 2–3 machines; minimal supervision. | Producción de alto volumen (1,000+ regiones), mass manufacturing (P.EJ., componentes automotrices). |
4. Classification by Degrees of Freedom (Número de hachas)
The number of axes (lineal + rotary) determines the machine’s ability to access complex part geometries. This is the most widely used classification for industrial CNC selection.
Número de hachas | Key Axes Configuration | Capabilities | Ideal Industries/Parts |
3-Máquinas CNC del eje | 3 linear axes (incógnita, Y, Z); tool moves along these axes to cut fixed workpieces. | Handles 2D/3D parts with simple geometries; no undercutting or complex curves. | Fabricación general (corchetes, simple gears), bienes de consumo (recintos de plástico). |
4-Máquinas CNC del eje | 3 linear axes + 1 rotary axis (P.EJ., Eje A: rotates around X-axis). | Accesses side/angled features; reduces workpiece repositioning by 50%. | Aeroespacial (simple engine parts), médico (bone screws with angled holes). |
5-Máquinas CNC del eje | 3 linear axes + 2 rotary axes (P.EJ., A + B axes); tool can tilt/rotate freely. | Machines complex 3D surfaces (P.EJ., hojas de turbina) in one setup. | Aeroespacial (Componentes del motor a reacción), moho & morir (deep cavities with undercuts), luxury automotive (curved body panels). |
5. Classification by Application Field
CNC machines are often tailored to specific industries—optimized for their unique materials and part requirements.
Campo de aplicación | Machine Features | Material Focus | Partes de ejemplo |
General-Purpose CNC Machines | Versátil; works with multiple materials and part types; easy to reconfigure. | Rieles, plástica, compuestos. | Maquinaria general (cajas de cambios), hardware de muebles (bisagras), electronic brackets. |
Specialized CNC Machines | Customized for industry-specific needs (P.EJ., resistencia a alta temperatura, Precisión de parte pequeña). | Industry-specific materials (P.EJ., titanium for aerospace, food-grade stainless steel for medical). | – Automotor: Engine block machining lines. – Médico: Dental implant mills. – Aeroespacial: Titanium component lathes. |
6. Other Special Classifications
These include machines with unique, combined functions—designed to solve niche manufacturing challenges.
Special Type | Key Functions | Ventaja clave | Casos de uso ideales |
Multi-Processing Machines | Combines 2+ machining types (P.EJ., torneado + molienda, perforación + corte con láser) in one machine. | Eliminates workpiece transfer between machines; Corta el tiempo de producción de 40%. | Complex parts needing multiple processes (P.EJ., automotive shafts with milled slots, medical tools with drilled holes + threaded ends). |
Micromachining Machines | Focuses on ultra-small parts/features; achieves nanometer-level resolution. | Processes parts as small as 0.1mm (P.EJ., microelectronic components); alta precisión (±0.0001mm). | Microelectronics (semiconductor chips), dispositivos médicos (micro-needles), aeroespacial (microsensores). |
How to Choose the Right CNC Machining Classification?
Follow this 4-step process to avoid mismatched selections:
- Define Material & Geometría:
- If working with metal shafts → Metal cutting (torneado) + 3-Eje CNC.
- If making complex aerospace turbine blades → Contour control + 5-Eje CNC.
- Match Automation to Volume:
- Lotes pequeños (10 regiones) → Semi-automatic CNC.
- Producción en masa (10,000 regiones) → Fully automatic CNC.
- Consider Budget & ROI:
- 5-axis machines cost 2–3x more than 3-axis models—only invest if complex parts justify the expense.
- Prueba con prototipos:
- For high-stakes projects (P.EJ., implantes médicos), run a prototype on the chosen CNC type to validate accuracy and efficiency.
La perspectiva de la tecnología de Yigu
En la tecnología yigu, we believe understanding classifications of CNC machining is the first step to smart manufacturing. Our product line covers all key classifications: 3/4/5-axis CNC machines for metal cutting, fully automatic lines for high-volume production, and specialized micromachining systems for microelectronics. We help clients select the right category by analyzing their material, volumen, and geometry needs—for example, a automotive supplier switched from 3-axis to 5-axis machines, cutting part rework by 60%. As Industry 4.0 advances, we’re integrating AI into all classifications to auto-optimize tool paths, making CNC selection and operation even more accessible.
Preguntas frecuentes
- q: Can a 5-axis CNC machine replace a 3-axis machine for simple parts?
A: Técnicamente si, Pero no es rentable. 5-axis machines have higher upfront costs (2–3x more) and longer setup times for simple parts. Stick to 3-axis machines for brackets, engranaje, or enclosures to save money.
- q: Which CNC classification is best for non-metallic materials like glass?
A: Non-metallic material processing—specifically ultrasonic machining (for brittle glass) or laser cutting (for precise glass panels). Avoid metal cutting CNC machines, as they’ll crack or shatter glass.
- q: How much more productive is a fully automatic CNC machine vs. a semi-automatic one?
A: Fully automatic machines are 2–3x more productive. Por ejemplo, a semi-automatic CNC makes 50 partes/día (with operator breaks), while a fully automatic one makes 120–150 parts/day (24/7 operation with minimal labor).