Light curing (including SLA and DLP) y FDM (Modelado de deposición fusionada) are two of the most popular 3D Tecnologías de impresión, but they excel in entirely different scenarios. Calling one “better” universally is inaccurate—their value depends on your project’s precision needs, presupuesto, material requirements, y aplicación. This article compares their core traits, actuación, and use cases to help you pick the right technology.
1. Principios centrales & Diferencias clave (Side-by-Side Table)
The first step to choosing is understanding how each technology works. Below is a breakdown of their fundamental differences:
Aspecto | Fotopolimerización (SLA/DLP) | MDF (Modelado de deposición fusionada) |
Tipo de tecnología | Photopolymer-based 3D printing | Thermoplastic-based 3D printing |
Principio fundamental | Usos ultravioleta (Uva) luz Para curar líquido resina fotosensible layer by layer into solid shapes. | Melts filamentos termoplásticos (P.EJ., Estampado, Abdominales) via a heated nozzle, then extrudes and stacks the material layer by layer. |
Componentes clave | Resin tank, UV light source (laser for SLA, projector for DLP), plataforma de construcción | Filament spool, heated nozzle (180–260 ° C), cama con calefacción, plataforma de construcción |
Support Structure | Requerimiento removable support structures (for overhangs/hollows) – post-processing needed to remove. | May need supports (for steep overhangs) but often uses less support material than light curing. |
2. Critical Performance Metrics (Comparación detallada)
To evaluate which fits your project, compare their performance across key metrics:
Métrico | Fotopolimerización (SLA/DLP) | MDF (Modelado de deposición fusionada) |
Precisión & Detalle | Excelente – Layer thickness as low as 0.025milímetros (SLA); produces smooth surfaces with fine details (P.EJ., tiny engravings, paredes delgadas). Ideal for intricate models like jewelry or dental crowns. | Moderado – Layer thickness usually 0.1mm–0.3mm; visible layer lines on the surface. Complex details (P.EJ., pequeños agujeros, thin features) may delaminate or collapse. |
Opciones de material | Limited to photosensitive resins (P.EJ., uso general, transparente, resistente a la alta temperatura, flexible). Resins are specialized and costly. | Wide range of termoplástico (P.EJ., Estampado, Abdominales, Petg, TPU). Materials are affordable, easy to store, y ampliamente disponible. |
Velocidad de impresión | Fast for small models – Single layers cure in artículos de segunda clase (DLP is faster than SLA). Large models may need layer stitching, Lo que agrega tiempo. | Slow – Even small parts take 3–8 horas; large models (P.EJ., a 30cm tall prototype) puede tomar 24+ horas. Speed drops further for high-precision prints. |
Postprocesamiento | Complex – Requires: 1. Rinsing with alcohol to remove uncured resin; 2. Secondary UV curing to harden parts; 3. Sanding/polishing to remove support marks. | Simple – Minimal processing needed. May require: 1. Trimming support material; 2. Light sanding to smooth layer lines (opcional). |
Costo | High – Printers cost \(1,000- )10,000+ (DLP is pricier than SLA); costos de resina \(50- )200 por litro. Mantenimiento (resin tank cleaning, filter replacement) adds expense. | Low – Entry-level printers cost \(200- )800 (P.EJ., Creality Ender series); filaments cost \(20- )50 por kg. Maintenance is simple (nozzle cleaning, bed leveling). |
Resistencia mecánica | Moderate to high – Engineering resins (P.EJ., tough resin) match the strength of injection-molded parts. Standard resins are brittle. | Moderate – PLA is rigid but brittle; ABS/PETG offer better impact resistance. Parts have good layer adhesion but lower strength than metal. |
3. Escenarios de aplicación ideales
Use this guide to match each technology to your project goals:
3.1 When to Choose Light Curing (SLA/DLP)
- High-Precision, Intricate Parts: Projects needing fine details or smooth surfaces, como:
- Jewelry prototypes (tiny engravings, complex patterns).
- Modelos dentales (accurate tooth shapes for crowns/bridges).
- Transparent/translucent parts (P.EJ., light covers, lens prototypes).
- Prototipos estéticos: Products where appearance matters (P.EJ., trampas de electrónica de consumo, toy designs).
- Small-Scale Production: Low-volume runs of detailed parts (no need for mass manufacturing molds).
3.2 When to Choose FDM
- Prototipos funcionales: Parts needing basic strength, como:
- Componentes mecánicos (engranaje, corchetes, bisagras).
- Modelos educativos (P.EJ., 3D anatomy models for schools).
- Maker projects (P.EJ., custom phone stands, 3D-printed tools).
- Large-Size Models: Projects too big for light curing printers (P.EJ., modelos arquitectónicos, Prototipos de muebles).
- Budget-Conscious Projects: Aficionados, estudiantes, or startups with limited funds (low printer and material costs).
4. Seguridad & Operation Considerations
Safety is often overlooked but critical for long-term use:
Aspecto | Fotopolimerización (SLA/DLP) | MDF (Modelado de deposición fusionada) |
Riesgos de seguridad | – Uncured resin is toxic and irritant (avoid skin/eye contact). – Resin fumes require ventilación (use a fume hood or open windows). – UV light can damage eyes (wear protective goggles). | – Heated nozzle (200–260 ° C) risks burns (keep hands away). – ABS printing releases harmful fumes (needs ventilation). – PLA no es tóxico (safe for home use). |
Ease of Operation | Moderate – Resin handling requires care; platform leveling is less critical than FDM. | Easy for beginners – Simple setup (load filament, level bed); most printers have user-friendly software. Common issues (P.EJ., adhesión de capa) are easy to troubleshoot. |
5. La perspectiva de la tecnología de Yigu
En la tecnología yigu, we believe the choice between light curing and FDM hinges on balancing precision, costo, y funcionalidad. For clients needing high-detail prototypes (P.EJ., dental labs, diseñadores de joyas), light curing (especially DLP) ofrece precisión inigualable. For functional parts or budget-friendly projects (P.EJ., startup prototypes, modelos educativos), FDM is the practical choice. We often recommend combining both: Use FDM for large structural components, then light curing for small, detailed parts that attach to them. Nuestro consejo? Start by defining your non-negotiables—if “surface smoothness” or “detail” is top priority, light curing wins; if “cost” or “size” matters most, FDM is better.
6. Preguntas frecuentes (Preguntas frecuentes)
- q: Can light curing 3D printers use FDM materials (P.EJ., Estampado)?
A: No. Light curing printers only work with resina fotosensible (they rely on UV light to cure liquid resin, not heat to melt filaments). FDM materials are incompatible.
- q: Is FDM suitable for making parts that need to withstand high temperatures?
A: Depende del material. Standard PLA melts at ~60°C (not heat-resistant), pero Abdominales (se derrite a ~ 100 ° C) o Pei (melts at ~210°C) can handle moderate heat. Para necesidades de alta temperatura (P.EJ., piezas del motor), light curing with high-temperature resin is better.
- q: Which technology is better for beginners?
A: FDM is ideal for beginners. It has lower upfront costs, simpler operation (minimal safety risks with PLA), and easier troubleshooting. Light curing requires careful resin handling and more complex post-processing—better for users with some 3D printing experience.