AISI 4340 Acero aleado: Propiedades, Usos & Guía de alta resistencia

fabricación de piezas metálicas a medida

Si está diseñando componentes que necesitan soportar tensiones extremas, alto impacto, o cargas pesadas, como trenes de aterrizaje aeroespaciales, ejes de grúas industriales, o piezas automotrices de alto rendimiento: necesita un material que ofrezca resistencia y dureza excepcionales. AISI 4340 El acero aleado es la solución premium.: como níquel-cromo-molibdeno (Ni-Cr-Mo) aleación, Ofrece mayor resistencia a la tracción., límite de fatiga, y tenacidad a bajas temperaturas que los grados de menor aleación como […]

Si está diseñando componentes que necesitan soportar tensiones extremas, alto impacto, o cargas pesadas, como trenes de aterrizaje aeroespaciales, ejes de grúas industriales, or high-performance automotive parts—you need a material that delivers exceptional strengthy toughness.AISI 4340 acero aleado is the premium solution: como níquel-cromo-molibdeno (Ni-Cr-Mo) aleación, it offers higherresistencia a la tracciónlímite de fatiga, and low-temperature toughness than lower-alloy grades like AISI 4130 or AISI 4140. Esta guía desglosa sus propiedades., aplicaciones del mundo real, proceso de fabricación, and material comparisons to help you solve the most demanding high-load design challenges.

1. Material Properties of AISI 4340 Acero aleado

AISI 4340’s performance comes from its quadruple-alloy design: nickel boosts toughness, chromium enhances corrosion resistance and hardenability, molybdenum improves high-temperature strength, and controlled carbon balances strength and ductility. Let’s explore its key properties in detail.

1.1 Composición química

AISI 4340 adheres to ASTM A29/A29M standards, with precise control over alloy elements to prioritize high strength and toughness. Below is its typical composition:

ElementSymbolContent Range (%)Key Role
Carbón (do)do0.38 – 0.43Enables heat treatment; delivers baseresistencia a la tracción
Cromo (cr)cr0.70 – 0.90Enhancesresistencia a la corrosión y templabilidad; improves wear resistance
Molibdeno (Mes)Mes0.20 – 0.30Raiseslímite de fatiga y estabilidad a altas temperaturas; prevents creep under heavy loads
Níquel (En)En1.65 – 2.00Core toughness booster; maintainsdureza al impacto at low temperatures (-40 °C)
Manganeso (Minnesota)Minnesota0.60 – 0.80Refines grain structure; mejoraductilidad without reducing strength
Silicio (Y)Y0.15 – 0.35Aids deoxidation; supports structural stability during heat treatment
Phosphorus (PAG)PAG≤ 0.035Minimized to avoid brittle fracture in low-temperature or high-stress conditions
Sulfur (S)S≤ 0.040Controlled to balancemaquinabilidad y dureza (lower S = better impact resistance)
Vanadio (V)V≤ 0.03Trace element; refines grains for uniform strength across thick sections
Cobre (Cu)Cu≤ 0.30Trace element; adds mild atmospheric corrosion resistance for outdoor parts

1.2 Propiedades físicas

These traits make AISI 4340 suitable for extreme environments—from sub-zero aerospace conditions to high-heat industrial machinery:

  • Densidad: 7.85 gramos/cm³ (same as standard steels)—simplifies weight calculations for heavy-load parts like crane shafts
  • Punto de fusión: 1,425 – 1,450 °C (2,597 – 2,642 °F)—compatible with forging and heat treatment for complex shapes
  • Conductividad térmica: 42.0 con/(m·K) en 20 °C; 38.0 con/(m·K) en 300 °C—ensures even heat distribution during quenching (reduces distortion)
  • Coeficiente de expansión térmica: 11.5 × 10⁻⁶/°C (20 – 100 °C)—minimizes stress from temperature swings (p.ej., aerospace takeoff/landing cycles)
  • Propiedades magnéticas: Ferromagnetic—enables non-destructive testing (END) like ultrasonic phased array to detect internal defects in thick parts.

1.3 Propiedades mecánicas

AISI 4340’s mechanical performance is unmatched among mid-range alloy steels, especially after heat treatment. Below are typical values for common conditions:

PropiedadMeasurement MethodAnnealed (Soft Condition)Quenched & Tempered (300 °C)Quenched & Tempered (600 °C)
Dureza (Rockwell)CDH20 – 23 CDH52 – 55 CDH30 – 33 CDH
Dureza (Vickers)HV190 – 220 HV500 – 530 HV290 – 320 HV
Resistencia a la tracciónMPa (ksi)700 MPa (102 ksi)1,800 MPa (261 ksi)1,050 MPa (152 ksi)
Yield StrengthMPa (ksi)450 MPa (65 ksi)1,600 MPa (232 ksi)900 MPa (130 ksi)
Alargamiento% (en 50 milímetros)22 – 26%7 – 9%16 – 18%
Dureza al impactoJ (en -40 °C)≥ 70 J≥ 30 J≥ 55 J
Fatigue LimitMPa (rotating beam)350 MPa800 MPa500 MPa

1.4 Otras propiedades

AISI 4340’s traits solve high-load design challenges:

  • Soldabilidad: Moderate—requires preheating to 250–300 °C and post-weld heat treatment (Pwht) para evitar grietas, but produces strong joints for load-bearing parts.
  • Formabilidad: Fair—best forged (not bent) in the annealed condition; formas complejas (p.ej., espacios en blanco para engranajes) are created via hot forging to maintain strength.
  • maquinabilidad: Good in the annealed condition (20–23 HRC); heat-treated parts need carbide tools (due to high hardness) but still cut cleanly.
  • Resistencia a la corrosión: Moderate—resists mild rust and chemicals; para ambientes hostiles (p.ej., marina), add chrome plating or ceramic coating.
  • Toughness: Exceptional—nickel content keeps it tough at -40 °C (critical for aerospace and cold-climate industrial parts), even at high strength.

2. Applications of AISI 4340 Acero aleado

AISI 4340’s high strength-toughness balance makes it ideal for components that can’t fail under extreme loads. Here are its key uses:

  • Componentes aeroespaciales: Landing gear struts, engine crankshafts, and helicopter rotor shafts—handles takeoff/landing impacts and sub-zero temperatures.
  • Piezas automotrices: High-performance racing engine crankshafts, engranajes de transmision, and differential housings—tolerates high torque and engine heat.
  • Componentes mecánicos: Heavy-duty shafts (crane, excavator), hydraulic press rams, and turbine rotors—supports loads up to 100+ tons without bending.
  • Maquinaria Industrial: Mining equipment gears, steel mill rolls, and power generator shafts—resists wear and cyclic loading for 10+ años.
  • Construction Equipment: Crane hooks, bulldozer axles, and pile driver rods—absorbs impact from heavy lifting and ground contact.
  • Defense Components: Tank tread pins, artillery recoil mechanisms, and missile launcher parts—tough enough for military-grade stress.

3. Manufacturing Techniques for AISI 4340 Acero aleado

Producing AISI 4340 requires precision—especially in heat treatment—to unlock its full strength-toughness potential. Here’s the step-by-step process:

  1. Steelmaking:
    • AISI 4340 is made using an Horno de arco eléctrico (EAF) (recycles scrap steel) o Horno de oxígeno básico (BOF). Níquel (1.65–2.00%), cromo (0.70–0.90%), and molybdenum (0.20–0.30%) are added during melting to ensure uniform alloy distribution.
  2. Forja & Laminación:
    • Most AISI 4340 parts start as Hot Forged blanks (1,150 – 1,250 °C)—forging aligns grain structure, boosting strength. After forging, blanks are Hot Rolled to rough shapes (verja, platos) or left as-forged for near-net-shape parts (p.ej., cigüeñales).
  3. Tratamiento térmico (Critical for Performance):
    • Recocido: Heated to 815–845 °C, held 3–4 hours, slow-cooled to 650 °C. Softens the steel (20–23 HRC) for machining and forging.
    • Temple: Heated to 845–870 °C (austenitizing), held 1–2 hours (más largo para partes gruesas), cooled in oil (not water—reduces cracking risk). Hardens to 58–60 HRC.
    • Templado: Reheated to 200–650 °C (based on needs):
      • 300 °C: Max strength (1,800 tracción MPa) para piezas de alta carga.
      • 600 °C: Balanced strength-toughness (1,050 tracción MPa) for impact-prone parts.
  4. Mecanizado:
    • Annealed AISI 4340 is machined with HSS or carbide tools for turning, molienda, o perforar. Heat-treated parts (52–55 HRC) need coated carbide tools (p.ej., TiAlN) to reduce wear. For precision (p.ej., bearing seats), finish grinding is used.
  5. Tratamiento superficial:
    • Enchapado: cromado (resistencia al desgaste) for shafts; niquelado (resistencia a la corrosión) para piezas aeroespaciales.
    • Revestimiento: Ceramic coating (high-heat resistance) for engine parts; revestimiento epoxi (resistencia química) for industrial machinery.
    • Nitriding: Optional—heats to 500–550 °C in ammonia gas to harden the surface (60–65 HRC) without distortion, ideal for gears and bearings.
  6. Control de calidad:
    • Chemical Analysis: Mass spectrometry verifies nickel, cromo, and molybdenum levels (per ASTM A29/A29M).
    • Mechanical Testing: De tensión, impacto (-40 °C), and hardness tests confirm performance.
    • END: Ultrasonic testing checks for internal defects; magnetic particle inspection finds surface cracks.
    • Microstructural Analysis: Optical microscopy ensures uniform grain structure (no large grains that cause weakness).

4. Estudios de caso: AISI 4340 in Action

Real projects highlight AISI 4340’s ability to handle extreme loads.

Estudio de caso 1: Aerospace Landing Gear (U.K.)

An aircraft manufacturer needed landing gear struts that could handle 120 kN impact loads and -40 °C temperatures. They chose AISI 4340, tratado térmicamente para 300 °C (52 CDH) para la fuerza. Después 10,000 landing cycles, the struts showed no fatigue cracks—outperforming AISI 4140 struts (which failed at 6,000 ciclos). This extended the landing gear’s lifespan by 67%, ahorro $200,000 per aircraft in maintenance.

Estudio de caso 2: Industrial Crane Shaft (Alemania)

A steel mill needed a crane shaft to lift 150-ton steel coils. They replaced the AISI 4140 shaft with AISI 4340 (tratado térmicamente para 450 °C for toughness). The new shaft lasted 8 years—double the lifespan of the old one—because its nickel content prevented fatigue from repeated lifting cycles. The mill saved $150,000 in replacement costs and avoided 3 production shutdowns.

5. AISI 4340 vs. Other Materials

How does AISI 4340 compare to lower-alloy steels and premium materials?

MaterialSimilarities to AISI 4340Diferencias claveMejor para
AISI 4140Cr-Mo alloy steelNo nickel; lower toughness (-40 °C impact: ≥20 J vs. 30 J); 25% más económicoMedium-load parts (p.ej., ejes de bomba)
AISI 4130Low-alloy steelLower carbon/nickel; weaker (1,450 MPa max tensile); better weldability; 40% más económicoWelded, low-to-medium load parts
304 Acero inoxidableResistente a la corrosiónExcellent rust resistance; weaker (515 tracción MPa); 3× pricierCorrosive environments, low-load parts
Aleación de titanio (Ti-6Al-4V)Alta resistencia al pesoEncendedor (4.5 gramos/cm³); similar strength; 8× pricierAerospace parts where weight is critical
Fibra de carbonoAlta resistencia al pesoEncendedor; sin corrosión; poor impact toughness; 10× pricierNon-load-bearing high-performance parts

Yigu Technology’s Perspective on AISI 4340 Acero aleado

En Yigu Tecnología, AISI 4340 is our top pick for high-load, high-toughness components. Its Ni-Cr-Mo composition solves the biggest pain point for clients: getting strength without sacrificing toughness—critical for aerospace, industrial, and defense projects. We supply AISI 4340 in forged blanks, verja, or plates, with custom heat treatment (300–650 °C) to match project needs. For clients upgrading from AISI 4140 o titanio, AISI 4340 offers unbeatable value: 2x the toughness of 4140 y 1/8 the cost of titanium, with enough strength for 90% of extreme-load applications.

FAQ About AISI 4340 Acero aleado

  1. Can AISI 4340 be welded for load-bearing parts?
    Yes—but it requires careful preheating (250–300 °C) and post-weld heat treatment (600–650 °C) to reduce residual stress. Use low-hydrogen electrodes (p.ej., E9018-B3) para evitar grietas, and test welds with ultrasonic inspection to ensure strength.
  2. Is AISI 4340 suitable for low-temperature applications?
    Absolutely—its nickel content maintains dureza al impacto en -40 °C (even when heat-treated to 52 CDH). For temperatures below -40 °C (p.ej., arctic machinery), choose a nickel-enriched variant (AISI 4340Ni) for extra toughness.
  3. What’s the maximum thickness for AISI 4340 regiones?
    AISI 4340 can be used for parts up to 200 mm thick—its high hardenability ensures uniform heat treatment across thick sections. For parts thicker than 200 milímetros, extend quenching hold time (2–3 horas) and use oil cooling to avoid core softening.
Índice
Desplazarse hacia arriba