Si está diseñando componentes que necesitan soportar tensiones extremas, alto impacto, o cargas pesadas, como trenes de aterrizaje aeroespaciales, ejes de grúas industriales, or high-performance automotive parts—you need a material that delivers exceptional strengthy toughness.AISI 4340 acero aleado is the premium solution: como níquel-cromo-molibdeno (Ni-Cr-Mo) aleación, it offers higherresistencia a la tracción, límite de fatiga, and low-temperature toughness than lower-alloy grades like AISI 4130 or AISI 4140. Esta guía desglosa sus propiedades., aplicaciones del mundo real, proceso de fabricación, and material comparisons to help you solve the most demanding high-load design challenges.
1. Material Properties of AISI 4340 Acero aleado
AISI 4340’s performance comes from its quadruple-alloy design: nickel boosts toughness, chromium enhances corrosion resistance and hardenability, molybdenum improves high-temperature strength, and controlled carbon balances strength and ductility. Let’s explore its key properties in detail.
1.1 Composición química
AISI 4340 adheres to ASTM A29/A29M standards, with precise control over alloy elements to prioritize high strength and toughness. Below is its typical composition:
| Element | Symbol | Content Range (%) | Key Role |
|---|---|---|---|
| Carbon (do) | do | 0.38 – 0.43 | Enables heat treatment; delivers baseresistencia a la tracción |
| Chromium (cr) | cr | 0.70 – 0.90 | Enhancesresistencia a la corrosión y templabilidad; improves wear resistance |
| Molibdeno (Mes) | Mes | 0.20 – 0.30 | Raiseslímite de fatiga y estabilidad a altas temperaturas; prevents creep under heavy loads |
| Níquel (En) | En | 1.65 – 2.00 | Core toughness booster; maintainsimpact toughness at low temperatures (-40 °C) |
| Manganese (Mn) | Mn | 0.60 – 0.80 | Refines grain structure; enhancesductilidad without reducing strength |
| Silicio (Y) | Y | 0.15 – 0.35 | Aids deoxidation; supports structural stability during heat treatment |
| Phosphorus (PAG) | PAG | ≤ 0.035 | Minimized to avoid brittle fracture in low-temperature or high-stress conditions |
| Sulfur (S) | S | ≤ 0.040 | Controlled to balancemaquinabilidad y dureza (lower S = better impact resistance) |
| Vanadium (V) | V | ≤ 0.03 | Trace element; refines grains for uniform strength across thick sections |
| Cobre (Cu) | Cu | ≤ 0.30 | Trace element; adds mild atmospheric corrosion resistance for outdoor parts |
1.2 Physical Properties
These traits make AISI 4340 suitable for extreme environments—from sub-zero aerospace conditions to high-heat industrial machinery:
- Densidad: 7.85 gramos/cm³ (same as standard steels)—simplifies weight calculations for heavy-load parts like crane shafts
- Punto de fusión: 1,425 – 1,450 °C (2,597 – 2,642 °F)—compatible with forging and heat treatment for complex shapes
- Conductividad térmica: 42.0 W/(m·K) en 20 °C; 38.0 W/(m·K) en 300 °C—ensures even heat distribution during quenching (reduces distortion)
- Coeficiente de expansión térmica: 11.5 × 10⁻⁶/°C (20 – 100 °C)—minimizes stress from temperature swings (p.ej., aerospace takeoff/landing cycles)
- Magnetic Properties: Ferromagnetic—enables non-destructive testing (END) like ultrasonic phased array to detect internal defects in thick parts.
1.3 Propiedades mecánicas
AISI 4340’s mechanical performance is unmatched among mid-range alloy steels, especially after heat treatment. Below are typical values for common conditions:
| Propiedad | Measurement Method | Annealed (Soft Condition) | Quenched & Tempered (300 °C) | Quenched & Tempered (600 °C) |
|---|---|---|---|---|
| Dureza (Rockwell) | CDH | 20 – 23 CDH | 52 – 55 CDH | 30 – 33 CDH |
| Dureza (Vickers) | HV | 190 – 220 HV | 500 – 530 HV | 290 – 320 HV |
| Resistencia a la tracción | MPa (ksi) | 700 MPa (102 ksi) | 1,800 MPa (261 ksi) | 1,050 MPa (152 ksi) |
| Yield Strength | MPa (ksi) | 450 MPa (65 ksi) | 1,600 MPa (232 ksi) | 900 MPa (130 ksi) |
| Alargamiento | % (en 50 milímetros) | 22 – 26% | 7 – 9% | 16 – 18% |
| Impact Toughness | J (en -40 °C) | ≥ 70 J | ≥ 30 J | ≥ 55 J |
| Fatigue Limit | MPa (rotating beam) | 350 MPa | 800 MPa | 500 MPa |
1.4 Other Properties
AISI 4340’s traits solve high-load design challenges:
- Soldabilidad: Moderate—requires preheating to 250–300 °C and post-weld heat treatment (Pwht) to avoid cracking, but produces strong joints for load-bearing parts.
- Formabilidad: Fair—best forged (not bent) in the annealed condition; formas complejas (p.ej., espacios en blanco para engranajes) are created via hot forging to maintain strength.
- maquinabilidad: Good in the annealed condition (20–23 HRC); heat-treated parts need carbide tools (due to high hardness) but still cut cleanly.
- Resistencia a la corrosión: Moderate—resists mild rust and chemicals; para ambientes hostiles (p.ej., marina), add chrome plating or ceramic coating.
- Toughness: Exceptional—nickel content keeps it tough at -40 °C (critical for aerospace and cold-climate industrial parts), even at high strength.
2. Applications of AISI 4340 Acero aleado
AISI 4340’s high strength-toughness balance makes it ideal for components that can’t fail under extreme loads. Here are its key uses:
- Componentes aeroespaciales: Landing gear struts, engine crankshafts, and helicopter rotor shafts—handles takeoff/landing impacts and sub-zero temperatures.
- Piezas automotrices: High-performance racing engine crankshafts, engranajes de transmision, and differential housings—tolerates high torque and engine heat.
- Componentes mecánicos: Heavy-duty shafts (crane, excavator), hydraulic press rams, and turbine rotors—supports loads up to 100+ tons without bending.
- Maquinaria Industrial: Mining equipment gears, steel mill rolls, and power generator shafts—resists wear and cyclic loading for 10+ años.
- Construction Equipment: Crane hooks, bulldozer axles, and pile driver rods—absorbs impact from heavy lifting and ground contact.
- Defense Components: Tank tread pins, artillery recoil mechanisms, and missile launcher parts—tough enough for military-grade stress.
3. Manufacturing Techniques for AISI 4340 Acero aleado
Producing AISI 4340 requires precision—especially in heat treatment—to unlock its full strength-toughness potential. Here’s the step-by-step process:
- Steelmaking:
- AISI 4340 is made using an Electric Arc Furnace (EAF) (recycles scrap steel) o Basic Oxygen Furnace (BOF). Níquel (1.65–2.00%), cromo (0.70–0.90%), and molybdenum (0.20–0.30%) are added during melting to ensure uniform alloy distribution.
- Forja & Laminación:
- Most AISI 4340 parts start as Hot Forged blanks (1,150 – 1,250 °C)—forging aligns grain structure, boosting strength. After forging, blanks are Hot Rolled to rough shapes (verja, platos) or left as-forged for near-net-shape parts (p.ej., cigüeñales).
- Tratamiento térmico (Critical for Performance):
- Recocido: Heated to 815–845 °C, held 3–4 hours, slow-cooled to 650 °C. Softens the steel (20–23 HRC) for machining and forging.
- Temple: Heated to 845–870 °C (austenitizing), held 1–2 hours (más largo para partes gruesas), cooled in oil (not water—reduces cracking risk). Hardens to 58–60 HRC.
- Tempering: Reheated to 200–650 °C (based on needs):
- 300 °C: Max strength (1,800 tracción MPa) para piezas de alta carga.
- 600 °C: Balanced strength-toughness (1,050 tracción MPa) for impact-prone parts.
- Mecanizado:
- Annealed AISI 4340 is machined with HSS or carbide tools for turning, molienda, o perforar. Heat-treated parts (52–55 HRC) need coated carbide tools (p.ej., TiAlN) to reduce wear. For precision (p.ej., bearing seats), finish grinding is used.
- Tratamiento superficial:
- Enchapado: cromado (resistencia al desgaste) for shafts; niquelado (resistencia a la corrosión) para piezas aeroespaciales.
- Revestimiento: Ceramic coating (high-heat resistance) for engine parts; revestimiento epoxi (resistencia química) for industrial machinery.
- Nitriding: Optional—heats to 500–550 °C in ammonia gas to harden the surface (60–65 HRC) without distortion, ideal for gears and bearings.
- Control de calidad:
- Chemical Analysis: Mass spectrometry verifies nickel, cromo, and molybdenum levels (per ASTM A29/A29M).
- Mechanical Testing: De tensión, impacto (-40 °C), and hardness tests confirm performance.
- END: Ultrasonic testing checks for internal defects; magnetic particle inspection finds surface cracks.
- Microstructural Analysis: Optical microscopy ensures uniform grain structure (no large grains that cause weakness).
4. Estudios de caso: AISI 4340 in Action
Real projects highlight AISI 4340’s ability to handle extreme loads.
Estudio de caso 1: Aerospace Landing Gear (U.K.)
An aircraft manufacturer needed landing gear struts that could handle 120 kN impact loads and -40 °C temperatures. They chose AISI 4340, tratado térmicamente para 300 °C (52 CDH) para la fuerza. Después 10,000 landing cycles, the struts showed no fatigue cracks—outperforming AISI 4140 struts (which failed at 6,000 ciclos). This extended the landing gear’s lifespan by 67%, ahorro $200,000 per aircraft in maintenance.
Estudio de caso 2: Industrial Crane Shaft (Alemania)
A steel mill needed a crane shaft to lift 150-ton steel coils. They replaced the AISI 4140 shaft with AISI 4340 (tratado térmicamente para 450 °C for toughness). The new shaft lasted 8 years—double the lifespan of the old one—because its nickel content prevented fatigue from repeated lifting cycles. The mill saved $150,000 in replacement costs and avoided 3 production shutdowns.
5. AISI 4340 vs. Other Materials
How does AISI 4340 compare to lower-alloy steels and premium materials?
| Material | Similarities to AISI 4340 | Diferencias clave | Mejor para |
|---|---|---|---|
| AISI 4140 | Cr-Mo alloy steel | No nickel; lower toughness (-40 °C impact: ≥20 J vs. 30 J); 25% más económico | Medium-load parts (p.ej., ejes de bomba) |
| AISI 4130 | Low-alloy steel | Lower carbon/nickel; weaker (1,450 MPa max tensile); better weldability; 40% más económico | Welded, low-to-medium load parts |
| 304 Acero inoxidable | Resistente a la corrosión | Excellent rust resistance; weaker (515 tracción MPa); 3× pricier | Corrosive environments, low-load parts |
| Aleación de titanio (Ti-6Al-4V) | Alta resistencia al peso | Encendedor (4.5 gramos/cm³); similar strength; 8× pricier | Aerospace parts where weight is critical |
| Fibra de carbono | Alta resistencia al peso | Encendedor; sin corrosión; poor impact toughness; 10× pricier | Non-load-bearing high-performance parts |
Yigu Technology’s Perspective on AISI 4340 Acero aleado
En Yigu Tecnología, AISI 4340 is our top pick for high-load, high-toughness components. Its Ni-Cr-Mo composition solves the biggest pain point for clients: getting strength without sacrificing toughness—critical for aerospace, industrial, and defense projects. We supply AISI 4340 in forged blanks, verja, or plates, with custom heat treatment (300–650 °C) to match project needs. For clients upgrading from AISI 4140 o titanio, AISI 4340 offers unbeatable value: 2x the toughness of 4140 y 1/8 the cost of titanium, with enough strength for 90% of extreme-load applications.
FAQ About AISI 4340 Acero aleado
- Can AISI 4340 be welded for load-bearing parts?
Yes—but it requires careful preheating (250–300 °C) and post-weld heat treatment (600–650 °C) to reduce residual stress. Use low-hydrogen electrodes (p.ej., E9018-B3) to avoid cracking, and test welds with ultrasonic inspection to ensure strength. - Is AISI 4340 suitable for low-temperature applications?
Absolutely—its nickel content maintains impact toughness en -40 °C (even when heat-treated to 52 CDH). For temperatures below -40 °C (p.ej., arctic machinery), choose a nickel-enriched variant (AISI 4340Ni) for extra toughness. - What’s the maximum thickness for AISI 4340 regiones?
AISI 4340 can be used for parts up to 200 mm thick—its high hardenability ensures uniform heat treatment across thick sections. For parts thicker than 200 milímetros, extend quenching hold time (2–3 horas) and use oil cooling to avoid core softening.
