Si está diseñando piezas que enfrentan fricción constante, alto estrés, o desgaste pesado, como engranajes industriales, pistas de rodamientos, or automotive camshafts—you need a material that combines extremedureza, resistencia a la tracción, and wear resistance.AISI 4150 acero aleado es la solución ideal: como cromo-molibdeno con alto contenido de carbono (cr-mo) aleación, Ofrece mayor dureza y resistencia al desgaste que los grados con bajo contenido de carbono como AISI. 4140, while maintaining enoughtenacidad for load-bearing applications. Esta guía desglosa sus propiedades., usos del mundo real, proceso de fabricación, and material comparisons to help you solve high-wear design challenges.
1. Material Properties of AISI 4150 Acero aleado
AISI 4150’s performance hinges on its high-carbon (0.48–0.53%) and balanced Cr-Mo composition: carbon enables maximum hardness after heat treatment, chromium boostsresistencia a la corrosión y templabilidad, and molybdenum prevents brittleness while enhancinglímite de fatiga. Let’s explore its key properties in detail.
1.1 Composición química
AISI 4150 follows ASTM A29/A29M standards, with strict control over elements to prioritize hardness and wear resistance. Below is its typical composition:
| Element | Symbol | Content Range (%) | Key Role |
|---|---|---|---|
| Carbón (do) | do | 0.48 – 0.53 | Enables high hardness (arriba a 60 CDH) after quenching; drives wear resistance |
| Cromo (cr) | cr | 0.80 – 1.10 | Enhancesresistencia a la corrosión y templabilidad; ensures uniform hardness across thick sections |
| Molibdeno (Mes) | Mes | 0.15 – 0.25 | Reduces brittleness at high hardness; raiseslímite de fatiga for cyclic wear |
| Manganeso (Minnesota) | Minnesota | 0.75 – 1.00 | Refines grain structure; aumentaresistencia a la tracción without sacrificing ductility |
| Silicio (Y) | Y | 0.15 – 0.35 | Aids deoxidation; supports stability during high-temperature heat treatment |
| Phosphorus (PAG) | PAG | ≤ 0.035 | Minimized to avoid brittle fracture in high-hardness conditions |
| Sulfur (S) | S | ≤ 0.040 | Controlled to balancemaquinabilidad y resistencia al desgaste (lower S = smoother wear surfaces) |
| Níquel (En) | En | ≤ 0.25 | Trace element; slightly improves low-temperaturedureza al impacto |
| Vanadio (V) | V | ≤ 0.03 | Trace element; refines grains to prevent hardness unevenness |
| Cobre (Cu) | Cu | ≤ 0.30 | Trace element; adds mild atmospheric corrosion resistance for outdoor parts |
1.2 Propiedades físicas
These traits make AISI 4150 suitable for high-wear, high-heat environments—from industrial gearboxes to automotive engines:
- Densidad: 7.85 gramos/cm³ (same as standard steels)—simplifies weight calculations for heavy-wear parts like gear blanks
- Punto de fusión: 1,415 – 1,445 °C (2,580 – 2,630 °F)—compatible with forging and quenching processes
- Conductividad térmica: 41.5 con/(m·K) en 20 °C; 37.5 con/(m·K) en 300 °C—ensures even heat distribution during quenching (avoids hot spots)
- Coeficiente de expansión térmica: 11.6 × 10⁻⁶/°C (20 – 100 °C)—minimizes distortion when heat-treating small, piezas precisas (p.ej., pistas de rodamientos)
- Propiedades magnéticas: Ferromagnetic—enables non-destructive testing (END) like magnetic particle inspection to detect surface cracks from wear.
1.3 Propiedades mecánicas
AISI 4150’s mechanical performance is optimized for hardness and wear resistance, with heat treatment tailored to end uses. Below are typical values:
| Propiedad | Measurement Method | Annealed (Soft Condition) | Quenched & Tempered (200 °C) | Quenched & Tempered (500 °C) |
|---|---|---|---|---|
| Dureza (Rockwell) | CDH | 22 – 25 CDH | 58 – 60 CDH | 35 – 38 CDH |
| Dureza (Vickers) | HV | 210 – 240 HV | 560 – 590 HV | 340 – 370 HV |
| Resistencia a la tracción | MPa (ksi) | 750 MPa (109 ksi) | 1,950 MPa (283 ksi) | 1,150 MPa (167 ksi) |
| Yield Strength | MPa (ksi) | 480 MPa (70 ksi) | 1,750 MPa (254 ksi) | 950 MPa (138 ksi) |
| Alargamiento | % (en 50 milímetros) | 20 – 24% | 5 – 7% | 14 – 16% |
| Dureza al impacto | J (en 20 °C) | ≥ 65 J | ≥ 25 J | ≥ 50 J |
| Fatigue Limit | MPa (rotating beam) | 380 MPa | 850 MPa | 550 MPa |
1.4 Otras propiedades
AISI 4150’s traits solve high-wear design challenges:
- Soldabilidad: Moderate—requires preheating to 300–350 °C (higher than AISI 4140) and post-weld heat treatment (Pwht) para evitar grietas; best for non-welded parts when possible.
- Formabilidad: Limited—best forged (not bent) in the annealed condition; formas complejas (p.ej., dientes de engranaje) are created via hot forging before heat treatment.
- maquinabilidad: Fair in the annealed condition (22–25 HRC); heat-treated parts (58–60 HRC) require specialized tools (p.ej., cubic boron nitride, CBN) for machining.
- Resistencia a la corrosión: Moderate—resists mild rust and oil-based fluids; for wet or chemical environments, add chrome plating or nitride coating.
- Resistencia al desgaste: Excellent—high hardness (58–60 HRC) and chromium content reduce metal-to-metal wear, extending part life by 2–3x vs. AISI 4140.
2. Applications of AISI 4150 Acero aleado
AISI 4150’s focus on hardness and wear resistance makes it ideal for parts that endure constant friction or impact. Here are its key uses:
- Engranajes & Gear Components: Industrial gearbox gears, automotive transmission gears, and differential gears—its high hardness resists tooth wear from heavy loads.
- Aspectos & Bearing Races: Ball bearing races, roller bearing cups, and needle bearing sleeves—smooth, hard surfaces minimize friction and extend bearing life.
- Piezas automotrices: Camshafts, valve lifters, and piston pins—tolerate engine heat and repeated contact with other components.
- Componentes mecánicos: High-wear shafts (p.ej., conveyor drive shafts), pump rotors, and tool holders—withstand abrasion from dust, suciedad, or metal particles.
- Maquinaria Industrial: Steel mill rolls, extrusion dies, and stamping tools—resist wear from shaping metal or plastic.
- Componentes aeroespaciales: Landing gear linkages and engine accessory gears (sistemas no críticos)—balances wear resistance and strength for aircraft use.
3. Manufacturing Techniques for AISI 4150 Acero aleado
Producing AISI 4150 requires precision in heat treatment to maximize hardness without brittleness. Here’s the step-by-step process:
- Steelmaking:
- AISI 4150 is made using an Horno de arco eléctrico (EAF) (recycles scrap steel) o Horno de oxígeno básico (BOF). Carbón (0.48–0.53%), cromo (0.80–1.10%), and molybdenum (0.15–0.25%) are added during melting to ensure uniform alloy distribution.
- Forja & Laminación:
- Most AISI 4150 parts start as Hot Forged blanks (1,150 – 1,250 °C)—forging aligns grain structure, boosting wear resistance. After forging, blanks are Hot Rolled to rough shapes (verja, platos) or left as-forged for near-net-shape parts (p.ej., árboles de levas).
- Tratamiento térmico (Critical for Hardness):
- Recocido: Heated to 815–845 °C, held 3–4 hours, slow-cooled to 650 °C. Softens the steel (22–25 HRC) for machining and forging.
- Temple: Heated to 830–860 °C (austenitizing), held 1–2 hours (más largo para partes gruesas), cooled in oil (water cooling risks cracking). Hardens to 60–62 HRC.
- Templado: Reheated to 200–500 °C (based on needs):
- 200 °C: Max hardness (58–60 HRC) for high-wear parts (p.ej., pistas de rodamientos).
- 500 °C: Balanced hardness-toughness (35–38 HRC) for impact-prone parts (p.ej., engranajes).
- Mecanizado:
- Annealed AISI 4150 is machined with carbide tools for turning, molienda, o perforar. Heat-treated parts (58–60 HRC) require CBN tools or grinding for precision. For gear teeth, hobbing is done in the annealed condition, followed by heat treatment and finish grinding.
- Tratamiento superficial:
- Enchapado: cromado (resistencia al desgaste) for shafts; niquelado (resistencia a la corrosión) para piezas de automoción.
- Nitriding: Heats to 500–550 °C in ammonia gas—creates a 0.1–0.3 mm hard surface layer (65–70 HRC) without distortion, ideal for gears and bearings.
- Carburación: Optional—heats to 900–950 °C in carbon-rich gas to harden only the surface (core remains tough), used for parts like gear teeth.
- Control de calidad:
- Chemical Analysis: Mass spectrometry verifies carbon, cromo, and molybdenum levels (per ASTM A29/A29M).
- Mechanical Testing: Hardness testing (HRC/HV) and tensile tests confirm strength; wear tests (p.ej., pin-on-disk) measure resistance to friction.
- END: Ultrasonic testing checks for internal defects; optical microscopy ensures uniform grain structure (no large grains that cause wear hot spots).
4. Estudios de caso: AISI 4150 in Action
Real projects show how AISI 4150 solves high-wear challenges.
Estudio de caso 1: Industrial Gearbox Gears (A NOSOTROS.)
A manufacturing plant had to replace AISI 4140 gearbox gears every 18 months due to tooth wear. They switched to AISI 4150 engranajes, tratado térmicamente para 200 °C (58 CDH) and nitrided for extra wear resistance. Los nuevos engranajes duraron 48 months—reducing maintenance costs by $60,000 anualmente. The high carbon content of AISI 4150 prevented tooth pitting, a common failure mode in 4140 engranajes.
Estudio de caso 2: Automotive Camshafts (Japón)
An automaker needed camshafts that could withstand 200,000 km of engine operation without lobe wear. They used AISI 4150 árboles de levas, forged, tratado térmicamente para 300 °C (55 CDH), and nitrided. Testing showed only 0.02 mm of lobe wear after 200,000 km—half the wear of AISI 4140 árboles de levas. This improved engine reliability and reduced warranty claims by 35%.
5. AISI 4150 vs. Other Materials
How does AISI 4150 compare to lower-alloy steels and wear-resistant alternatives?
| Material | Similarities to AISI 4150 | Diferencias clave | Mejor para |
|---|---|---|---|
| AISI 4140 | Cr-Mo alloy steel | Lower carbon (0.38–0.43%); lower hardness (máximo 53 CDH); better weldability; 20% más económico | Medium-wear parts (p.ej., ejes de bomba) |
| AISI 4130 | Low-alloy steel | Lower carbon (0.28–0.33%); weaker (1,450 MPa max tensile); better weldability; 35% más económico | Welded, low-wear parts |
| AISI 4340 | Ni-Cr-Mo alloy steel | Higher nickel (1.65–2.00%); better toughness; lower max hardness (55 CDH); 30% pricier | High-load, medium-wear parts (p.ej., tren de aterrizaje) |
| 52100 Acero para rodamientos | High-carbon steel | Higher chromium (1.30–1,60%); mejor resistencia al desgaste; lower toughness; 15% pricier | Rodamientos de precisión (p.ej., ball bearings) |
| Acero inoxidable 440C | Resistente a la corrosión | Excellent rust resistance; similar hardness (58–60 HRC); 4× pricier | Wet or chemical high-wear parts |
Yigu Technology’s Perspective on AISI 4150 Acero aleado
En Yigu Tecnología, AISI 4150 is our top choice for high-wear, load-bearing components. Its high-carbon Cr-Mo composition solves the biggest pain point for clients: getting parts that resist wear without breaking—critical for industrial gearboxes, motores automotrices, y maquinaria. We supply AISI 4150 in forged blanks, verja, or plates, with custom heat treatment (200–500 °C) and surface options (nitruración, cromado). For clients upgrading from AISI 4140, AISI 4150 delivers 2–3x longer part life at a small cost premium—saving money on maintenance and replacements long-term.
FAQ About AISI 4150 Acero aleado
- Can AISI 4150 be used for parts that need both high wear resistance and impact toughness?
Yes—temper it to 400–500 °C (38–42 HRC). This balances hardness (enough for wear resistance) y dureza (to absorb impact). Por ejemplo, gears tempered to 450 °C handle both tooth wear and occasional shock loads. - Is AISI 4150 harder to machine than AISI 4140?
Yes—especially when heat-treated. Annealed AISI 4150 (22–25 HRC) machines similarly to annealed 4140, but heat-treated AISI 4150 (58–60 HRC) requires CBN tools or grinding, mientras 4140 (50–53 HRC) can use coated carbide tools. - What’s the maximum thickness for AISI 4150 regiones?
AISI 4150 works well for parts up to 100 mm thick—its chromium content ensures uniform hardening across sections. For thicker parts (>100 mm), extend quenching hold time (2–3 horas) and use oil cooling to avoid core softening.
