Types of prototypes refer to the classification of physical models based on production processes, Materialien, functions, and uses—each type serves unique purposes in product development, from verifying appearance to testing mass production feasibility. Choosing the correct prototype type is critical for reducing development costs, accelerating iteration cycles, and ensuring alignment with final product goals. This article systematically breaks down the core categories of prototypes, ihre Eigenschaften, applicable scenarios, and selection guidelines to help teams make informed decisions.
1. Classification by Production Process
Prototypes differ significantly in precision, kosten, and lead time based on how they are manufactured. This classification is the most common starting point for prototype selection.
Prototyptyp | Kerneigenschaften | Step-by-Step Production Flow | Anwendbare Szenarien | Schlüsselvorteile |
3D Printing Prototype | – Suitable for Komplexe gekrümmte Oberflächen Und hohle Strukturen (Z.B., internal cavities of a smartphone case).- Materialien: PLA, ABS, Harz, Nylon (supports personalized customization).- Kosten: Niedrig (≈ (5- )50 per unit for small batches).- Vorlaufzeit: Schnell (4–24 Stunden pro Teil). | 1. Export 3D CAD models to STL format.2. Optimize settings: Schichtdicke (0.1–0,2 mm), Füllung (10–30 %).3. Print with FDM (PLA/ABS) oder SLA (Harz).4. Remove supports and sand surface lines. | – Unterhaltungselektronik (earbud shells, smartwatch frames).- Spielzeug (action figure prototypes with intricate details).- Artworks and medical models (anatomical replicas). | – No mold required (low upfront investment).- Ideal for rapid iteration (1–10 Einheiten).- Erfasst schöne Details (Z.B., 0.5mm-thick texture patterns). |
CNC Machining Prototype | – Ultrahohe Präzision (Toleranz: ± 0,05 mm) und glatte Oberflächenfinish (RA 1,6–3,2 μm).- Materialien: Mostly metals (Aluminiumlegierung, Kupfer) oder starre Kunststoff (Pom, Acryl).- Kosten: Medium to high (≈ (20- )200 pro Einheit).- Vorlaufzeit: 1–3 days per part. | 1. Convert 3D models to G-code (using Mastercam or UG).2. Secure material blocks (metal/plastic) to the CNC machine bed.3. Machine with optimized toolpaths (Schnitttiefe: 0.1–0,5 mm pro Pass).4. Sand or polish to remove tool marks. | – Mechanische Teile (Getriebe, shafts for industrial equipment).- Autoteile (Halterungen aus Aluminiumlegierung, Sensorgehäuse).- High-End-Elektronik (precision connectors for laptops). | – Durable for functional testing (Z.B., load-bearing of a drone frame).- Matches mass production material properties (critical for performance validation). |
Silicone Duplicate Prototype | – Based on a Meisterform (3D-printed or CNC-machined) for replication.- Materialien: Pu Resin, Epoxid, soft glue (TPU) (simulates rubber or plastic textures).- Batch Capacity: Bis zu 50 Einheiten (cost-effective for small-batch trials).- Vorlaufzeit: 3–5 Tage (including mold making). | 1. Make a high-quality master prototype (Z.B., CNC-machined acrylic).2. Pour liquid silicone (viscosity 500–2000 cP) around the master to create a mold.3. Cure the mold at 25–80°C for 4–24 hours.4. Inject PU resin/epoxy into the mold and demold after curing. | – Soft parts (Schlüsselanhänger, TPU mobile phone cases).- Small-batch trial production (Z.B., 20 units of a toy car shell).- Parts requiring uniform texture (Z.B., rubber grips for tools). | – Low per-unit cost (≈ (3- )15 per copy).- Preserves master details (no loss of texture or dimension). |
Handmade Prototype | – High flexibility for artistic or special materials (Holz, clay, oil clay).- Relies on technician experience (skill-dependent quality).- Kosten: Niedrig (no equipment fees, but labor-intensive).- Vorlaufzeit: Langsam (1–7 days per part). | 1. Select materials (Z.B., clay for sculpting, wood for carving).2. Shape manually with tools (carving knives, Sandpapier, Formen).3. Finish with paint or polish (bei Bedarf). | – Sculptures and film/television props (Z.B., a fantasy movie’s wooden weapon).- Konzeptmodelle (early-stage design sketches turned physical).- Artisanal products (hand-carved wooden toys). | – No specialized equipment required.- Easy to modify on the spot (Z.B., adjusting a clay model’s shape). |
2. Classification by Material
The material of a prototype directly impacts its strength, Aussehen, and functionality—this classification is critical for matching prototype performance to final product requirements.
Prototyptyp | Material Examples | Kernfunktionen | Anwendbare Szenarien | Einschränkungen |
Plastic Prototype | ABS, PC, Pom, Acryl, PLA | – Leicht (Dichte: 0.9–1,2 g/cm³) and easy to process.- Supports surface treatments (Sprühen, elektroplierend, Seidenvorführung).- Kosten: Niedrig bis mittel (≈ (5- )50 pro Einheit). | – Most consumer products (plastic toy shells, PC laptop housings).- Parts requiring corrosion resistance (acrylic display cases).- Non-load-bearing components (ABS phone stand). | – Lower strength than metal (not suitable for heavy-load testing).- Einige Kunststoffe (PLA) deform at high temperatures (>60° C). |
Metal Prototype | Aluminiumlegierung (6061, 7075), Edelstahl (304, 316), Kupfer | – Hohe Stärke (aluminum alloy tensile strength: 200–300 MPa) and good texture.- Excellent heat and corrosion resistance (stainless steel for outdoor parts).- Kosten: Hoch (≈ (50- )300 pro Einheit). | – Last tragende Komponenten (Kfz-Aufhängungshalterungen).- Precision equipment (copper connectors for electronics).- Industriemaschinenteile (stainless steel gears). | – Schwer (Dichte: 2.7–8.9 g/cm³) — not ideal for portable products.- Long production time (CNC machining requires complex toolpaths). |
Soft Rubber Prototype | TPU, Silikon, weicher PVC | – Flexibel (Land eine Härte: 20–50) and non-slip.- Gute Elastizität (recovers shape after compression).- Kosten: Medium (≈ (10- )60 pro Einheit). | – Griffe (Werkzeuggriffe, bike handlebars).- Dichtungsringe (waterproof gaskets for smartwatches).- Soft toy parts (silicone doll limbs, TPU toy wheels). | – Low rigidity — not suitable for structural components.- May degrade over time (exposed to sunlight or oil). |
Resin Prototype | Epoxidharz, Polyurethanharz | – Transparent or translucent (leichte Durchlässigkeit: 80–90% for clear resin).- Glatte Oberfläche (no post-processing needed for SLA-printed resin).- Kosten: Medium (≈ (15- )80 pro Einheit). | – Imitation glass/crystal products (resin lamp shades, Fälle anzeigen).- Medizinische Modelle (transparent anatomical replicas).- High-gloss decorative parts (resin toy eyes, Schmuck-Prototypen). | – Spröde (prone to cracking under impact).- Some resins are not heat-resistant (>80°C may warp). |
3. Classification by Function
Prototypes are designed to validate specific aspects of a product—this classification ensures alignment with development goals (Z.B., appearance vs. Funktionalität).
Prototyptyp | Core Objective | Schlüsselmerkmale | Anwendbare Szenarien | Validation Methods |
Aussehen Prototyp | Verifizieren Form, Farbe, Textur, and assembly effect (no focus on internal structure). | – Focus on surface treatment (Sprühen, elektroplierend, Sandstrahlen).- Internal structure can be simplified (Z.B., hollowed-out to reduce cost).- Low precision for non-visible dimensions (Toleranz: ± 0,5 mm). | – Unterhaltungselektronik (smartphone back covers, Tabletschalen).- Automobilteile (headlight casings, bumper prototypes).- Home appliance panels (refrigerator door fronts, Bedienfelder für Waschmaschinen). | – Visuelle Inspektion (check color uniformity, Texturkonsistenz).- Stakeholder feedback (Z.B., “Does the texture match brand guidelines?”). |
Struktureller Prototyp | Prüfen assembly logic, mobility, und strukturelle Stabilität (Z.B., folding, rotating). | – Exact dimensions required (Toleranz: ± 0,1 mm) to simulate mass production. | – Roboter (joint mobility, arm folding structure). | – Assembly testing (check if parts fit without force, no interference). |
– May include simple mechanical structures (Scharniere, Schnallen) but no electronic components. | – Medizinprodukte (adjustable wheelchair armrests, Chirurgische Werkzeuggriffe).- Household products (folding chairs, detachable storage boxes). | – Mobility testing (Z.B., fold a chair 100 times to check for looseness).- Load testing (apply weight to verify structural strength). | ||
Funktioneller Prototyp | Validate the core functions of the product (circuitry, hydraulics, optics). | – Integrated with electronic modules, Sensoren, or mechanical systems.- Close to the finished product form (internal structure and external appearance are complete).- High precision for functional components (Toleranz: ± 0,05 mm). | – Intelligent hardware (smart speakers with voice recognition, wearable fitness trackers).- Industrieausrüstung (hydraulic valve prototypes, optical lens holders).- Scientific research instruments (sensor prototypes for environmental monitoring). | – Funktionstests (Z.B., “Does the sensor detect temperature accurately?”).- Umwelttests (simulate high/low temperatures, humidity to check function stability). |
4. Classification by Use
This classification focuses on the prototype’s role in the product development lifecycle—from early design to pre-mass production.
Prototyptyp | Kernfunktion | Schlüsselmerkmale | Applicable Stages |
Design Verification Prototype | Confirm appearance design, size ratio, and human-computer interaction. | – Schnelle Produktion (3D printing or handmade).- Niedrige Kosten (simplified structure).- Easy to modify (supports iterative design). | Early design stage (after 2D drawings, before structural finalization). |
Assembly Verification Prototype | Prüfen fit between parts, screw hole position, and buckle structure. | – Parts are split to simulate mass production assembly process.- No need for surface treatment (focus on fit, not appearance). | Mid-development stage (after structural design, before functional testing). |
Mass Production Test Prototype | Bestätigen production process feasibility (Injektionsformung, Stempeln) and material stability. | – Uses the same materials and processes as mass production.- Hohe Präzision (matches mass production standards).- Batch production possible (10–50 Einheiten) to test process consistency. | Late development stage (before opening mass production molds). |
5. Special Types of Prototypes
These prototypes are designed for unique scenarios (Z.B., Transparenz, Hochtemperaturwiderstand) and address niche product requirements.
Prototyptyp | Materialien | Kernfunktionen | Anwendbare Szenarien |
Transparent Prototype | Acryl, PC, clear resin | – High light transmittance (Acryl: 92%, PC: 89%).- Supports polishing to enhance clarity (no cloudiness). | – Lamps (acrylic lamp shades, resin light guides).- Display frames (transparent phone cases, museum exhibit holders).- Medizinprodukte (transparent IV fluid containers, chirurgische Instrumentengriffe). |
High-Temperature Resistant Prototype | Pa (Nylon), PPA, Metall (Edelstahl, Titanlegierung) | – Stand hohen Temperaturen (Pa: 150–200 ° C., Metall: 500° C+).- No deformation or performance loss in high-heat environments. | – Kfz -Motorteile (Ölpfannen, Ventilabdeckungen).- Industrial ovens (Hochtemperatur-Sensorgehäuse).- Luft- und Raumfahrtkomponenten (small satellite parts). |
Simulation Prototype | Silikon, foam material, weicher Gummi | – Simulates soft touch (Z.B., human skin, foam cushions).- Flexible and compressible (mimics real-world tactile feedback). | – Spielzeug (silicone doll skin, foam puzzle mats).- Medizinische Modelle (silicone human organ replicas for training).- Verbraucherprodukte (foam ear tips for headphones, soft rubber grips). |
6. How to Choose the Right Type of Prototype?
Use this step-by-step guide to select the optimal prototype based on your goals, Budget, und Zeitleiste.
6.1 By Development Goal
Ziel | Recommended Prototype Type | Beispiel |
Appearance Validation | 3D printing prototype (Harz) + spraying/electroplating. | A resin smartphone back cover prototype sprayed with matte black paint to test color. |
Structural Stability Testing | CNC -Bearbeitungsprototyp (metal/plastic) + Montageprüfung. | A CNC-machined aluminum alloy drone frame to test load-bearing capacity. |
Small-Batch-Versuchsproduktion | Silicone duplicate prototype (Pu Resin). | 30 PU resin toy car shells replicated from a 3D-printed master. |
6.2 By Budget
Budget Range | Recommended Prototype Type | Grund |
Niedrig (\(5- )50) | 3D printing prototype (PLA/ABS) or handmade prototype. | No mold fees and low material costs. |
Medium (\(50- )200) | CNC -Bearbeitungsprototyp (Plastik) or silicone duplicate prototype. | Balances precision and cost for functional testing. |
Hoch ($200+) | CNC -Bearbeitungsprototyp (Metall) or mass production test prototype. | Ensures compatibility with mass production processes (Z.B., Injektionsformung). |
6.3 By Timeline
Zeitleiste | Recommended Prototype Type | Vorlaufzeit |
Urgent (1–2 Tage) | 3D printing prototype (FDM/SLA). | 4–24 Stunden pro Teil. |
Normal (3–7 Tage) | Silicone duplicate prototype or CNC machining prototype (Plastik). | 3–5 Tage (Silikon) or 1–3 days (CNC plastic). |
No Rush (1–2 Wochen) | CNC -Bearbeitungsprototyp (Metall) or mass production test prototype. | 5–10 Tage (CNC metal) or 7–14 days (mass production test). |
Perspektive der Yigu -Technologie
Bei Yigu Technology, we see choosing the right type of prototype as a “cost-saving catalyst” for product development. Too many clients waste resources on over-precise prototypes (Z.B., CNC metal for appearance testing) or underperform ones (Z.B., 3D-printed PLA for high-temperature parts). Unser Ansatz: We first clarify the client’s core goal—Is it appearance, Funktion, or mass production feasibility? Zum Beispiel, a startup needing 5 action figure prototypes in 3 days gets 3D-printed resin prototypes (schnell, detailliert), while an auto parts maker validating engine components gets high-temperature resistant PA prototypes. We also prioritize material-process matching—e.g., using silicone duplicates for soft parts to avoid CNC’s rigidity. By aligning prototype type with goals, we help clients cut rework costs by 40% and speed up development by 30%.
FAQ
- Can I use a 3D printing prototype for mass production feasibility testing?
No—3D printing prototypes use different processes (layer-by-layer deposition) than mass production (Injektionsformung, Stempeln), so they can’t validate mold compatibility or process stability. For mass production testing, use a prototype made with the same process as final production (Z.B., injection-molded plastic prototypes).
- What’s the best prototype type for a transparent product (Z.B., a clear lamp shade)?
Choose a transparent prototype made from acrylic, PC, or clear resin. For early appearance testing, use 3D-printed clear resin (schnell, niedrige Kosten). Für Funktionstests (Z.B., leichte Durchlässigkeit), use CNC-machined acrylic (higher precision and better material stability).
- Is a handmade prototype suitable for functional testing?
Rarely—handmade prototypes rely on technician skill, so their dimensions and structure are inconsistent (Toleranz: ±1–5mm). They are best for early concept verification (Z.B., a clay model of a toy) but not for functional tests (Z.B., checking if a hinge rotates smoothly). Für Funktionstests, use 3D-printed or CNC-machined prototypes.