What Are the Stages of the Die Casting Injection Process?

CNC -Bearbeitung von Thermoplastik

The die casting injection process is a precisely orchestrated sequence of speed and pressure adjustments that transforms molten metal into high-quality parts. While it may seem like a single “injection” step, it actually unfolds in distinct stages—each designed to solve a specific challenge, from expelling air to preventing defects like shrinkage or flash. These stages vary slightly by equipment type (Z.B., hot vs. Kaltkammermaschinen) and alloy (Aluminium vs. Zink), but three mainstream classification systems dominate industry use: the 5-stage (theoretical), 3-stage (simplified), and 4-stage (modern machine) Modelle. But what happens in each stage? How do they differ? And how to choose the right classification for your production? This article answers these questions with technical details, parameter benchmarks, und reale Anwendungen.

1. Kernprinzipien: Why Staged Injection Matters

Before diving into specific stages, it’s critical to understand the “why” behind staged injection. Molten metal behaves differently under varying speed and pressure—rushing it too fast causes turbulence (trapping air and oxide films), while moving it too slow leads to premature solidification (causing undercasting). Staged injection solves this by:

  • Expelling air: Low-speed stages push air out of the pressure chamber and runners, avoiding bubbles in the final part.
  • Preventing splashing: Gentle initial movement stops molten metal from splashing against mold walls (which creates cold shuts).
  • Ensuring full filling: High-speed stages quickly fill complex cavities before the metal cools.
  • Compacting metal: Final pressure stages eliminate shrinkage and boost part density.

Every stage works together to balance flow efficiency (filling the mold quickly) Und Fehlervermeidung (avoiding air, kalte Schließungen, or flash)—the key to consistent die casting quality.

2. Three Mainstream Stage Classifications: Ein detaillierter Vergleich

The industry uses three primary ways to divide the injection process, each tailored to different equipment and production goals. The table below breaks down each classification, its stages, Schlüsselparameter, und ideale Anwendungsfälle:

ClassificationStagesKey Objectives & Technische DetailsTypische Parameter (Aluminiumlegierungen, Kaltkammer)Ideale Anwendung
1. 5-Stage Division (Basic Theory)1. Preparation StageAdjust initial machine state: Reset punch to starting position; preheat pressure chamber to 150–200°C.- Load molten metal into the pressure chamber (volume = part weight + 5–10% Abfall).Punch position: 0mm (starting point)- Pressure chamber temp: ±10°C toleranceAll die casting machines; used for training and process validation.
2. Slow Sealing StagePunch moves at low speed (0.1–0.3m/s) to seal the feeding port.- Push molten metal to the front of the pressure chamber—expels 80–90% of air.– Geschwindigkeit: 0.1–0.3m/s- Travel distance: 50–100 mm (covers feeding port)Prevents air from being drawn back into the pressure chamber; critical for large parts.
3. Accumulation StageMetal accumulates at the inner gate front, building “momentum” for high-speed filling.- Ensures a steady metal supply to avoid gaps during the next stage.– Geschwindigkeit: 0.3–0.5m/s- Druck: 5–10MPa (maintains flow without splashing)Ideal for parts with thin walls (≤ 3 mm); ensures uniform metal distribution.
4. Filling StagePunch accelerates to high speed (2–5m/s) to fill the mold cavity quickly.- Schlüssel: Fill before the metal solidifies (typical filling time: 0.05–0.2s for small parts).– Geschwindigkeit: 2–5m/s (variiert je nach Teiledicke; faster for thinner walls)- Beschleunigung: ≤5m/s² (avoids turbulence)All high-volume production; critical for complex parts with deep cavities.
5. Boosten & Holding StageApply high pressure (50–100 MPa) via the booster mechanism to compact molten metal.- Maintain pressure during solidification (Haltezeit: 10–20s) to eliminate shrinkage.Boost pressure: 50–100 MPa- Haltezeit: 1.2× ErstarrungszeitPressure-bearing parts (Z.B., Hydraulikventile); prevents sink defects.
2. 3-Stage Division (Classic Simplified)1. Slow Injection StageCombines “slow sealing” and “accumulation” stages: Niedrige Geschwindigkeit (0.1–0.5m/s) pushes metal over the gate, expels air, and builds momentum.- Simplified for easy operation—reduces parameter setup time.– Geschwindigkeit: 0.1–0.5m/s- Druck: 5–15MPaSmall to medium-sized parts (Z.B., 3C electronic components); used on older machines with limited parameter controls.
2. Fast Injection StageSame as 5-stage “filling stage”: Hohe Geschwindigkeit (2–5m/s) fills the cavity quickly.- Focus on cycle efficiency—common in high-volume production (Z.B., zinc alloy hardware).– Geschwindigkeit: 2–5m/s- Füllzeit: <0.2S (Für Teile <500G)Teile aus Zinklegierung (Heißkammermaschinen); fast-cycle products (Z.B., bathroom faucet handles).
3. Boosting StageMerges “boosting” and “holding” stages: Apply high pressure (50–80MPa) and hold until solidification.- Simplified for operators to monitor—reduces human error.– Druck: 50–80MPa- Haltezeit: 8–15sNicht kritische Teile (Z.B., toy casings); low-skill production lines.
3. 4-Stage Division (Modern Machines)1. Slow Pressure Injection StageIdentical to 5-stage “slow sealing stage”: Niedrige Geschwindigkeit (0.1–0.3m/s) seals the port and expels air.- Adds real-time pressure monitoring to avoid metal leakage.– Geschwindigkeit: 0.1–0.3m/s- Druck: 5–10MPa (monitored via sensors)Modern cold chamber machines; parts requiring strict air control (Z.B., EV -Batteriegehäuse).
2. Fast Injection StageSame as 5-stage “filling stage”: Hohe Geschwindigkeit (2–6m/s) fills complex cavities.- Uses variable speed curves (Z.B., J-shaped acceleration) um Turbulenzen zu reduzieren.– Geschwindigkeit: 2–6m/s- Beschleunigung: 3–5m/s² (smooth ramp-up)Complex aluminum parts (Z.B., Kfz-Motorhalterungen); machines with AI parameter control.
3. Deceleration StageUnique to modern machines: Slow the punch (from 2–6m/s to 0.5–1m/s) as filling nears completion.- Reduces impact on the mold (Den Schimmellebensdauer verlängern) and minimizes flash (excess metal at parting lines).Deceleration rate: 2–4m/s²- End speed: 0.5–1m/sHochvorbereitete Teile (Z.B., Komponenten für medizinische Geräte); molds with tight tolerances (± 0,05 mm).
4. Pressure Holding StageFocus on uniform pressure application: Maintain 50–100MPa until the part’s surface solidifies.- Adds cooling channel synchronization (adjusts water flow to match solidification).– Druck: 50–100 MPa- Haltezeit: 10–25s (varies by wall thickness)Safety-critical parts (Z.B., automotive steering knuckles); parts requiring high density (≥99.5%).

3. Key Parameter Tuning: Optimize Each Stage for Defect Prevention

Even with the right stage division, poor parameter settings lead to defects. Below is a guide to tuning critical parameters for common alloys and defect risks:

A. Parameter Benchmarks by Alloy

LegierungstypSlow Stage SpeedFast Stage SpeedBoost PressureHaltezeit (10mm Thick Part)
Aluminium (Kaltkammer)0.1–0.3m/s2–5m/s50–100 MPa12–18s
Zink (Heiße Kammer)0.2–0.4m/s1–3m/s30–50MPa8–12s
Magnesium (Kaltkammer)0.1–0.2m/s3–6m/s60–90MPa10–15s

B. Defect-Specific Parameter Adjustments

If you’re facing common issues (Z.B., Blasen, kalte Schließungen), tweak stages as follows:

DefektGrundursache (Stage Issue)Parameter Fix
Bubbles/ PorosityFast stage too fast (Turbulenz); slow stage didn’t expel air.Reduce fast stage speed by 0.5–1m/s.- Extend slow stage travel by 20–30mm (expels more air).
Cold ShutsFast stage too slow (metal solidifies mid-fill); slow stage too long.Increase fast stage speed by 0.3–0.8m/s.- Shorten slow stage time by 0.5–1s.
Shrinkage SinksBoost pressure too low; holding time too short.Increase boost pressure by 10–20MPa.- Extend holding time by 2–5s (1.2× Erstarrungszeit).
BlitzDeceleration stage missing; fast stage too fast (excess metal squeezed into gaps).Add a deceleration stage (0.5–1m/s end speed).- Reduce fast stage speed by 0.5–1m/s.

4. How to Choose the Right Stage Classification

Selecting the best stage division depends on three factors: equipment capability, Teilkomplexität, und Produktionsvolumen. Follow this decision tree:

  1. Equipment Age/Type:
  • Older machines (pre-2010) with limited parameter controls: Use 3-stage division (simplified, Einfach zu bedienen).
  • Modern machines (post-2010) with AI and sensor integration: Use 4-stage division (leverages deceleration and real-time monitoring).
  • Training or lab environments: Use 5-stage division (teaches core principles).
  1. Teilkomplexität:
  • Einfache Teile (Z.B., flache Klammern): 3-stage division (no need for deceleration).
  • Komplexe Teile (Z.B., EV battery housings with thin walls): 4-stage division (deceleration prevents flash).
  • Kritische Teile (Z.B., Luft- und Raumfahrtkomponenten): 5-stage division (granular control reduces defects).
  1. Produktionsvolumen:
  • Hochvolumen (>100k parts/year): 3 or 4-stage (Schnelles Setup, low operator input).
  • Low volume (<10k parts/year): 5-stage (flexible tuning for small batches).

5. Yigu Technology’s Perspective on Staged Injection

Bei Yigu Technology, we see staged injection as the “brain” of die casting—poorly tuned stages undo even the best mold designs. For automotive clients using cold chamber machines, our 4-stage AI-driven system (with real-time speed/pressure adjustment) reduced defect rates from 7% Zu <1.8%, cutting scrap costs by $40,000/year for a 100k-part batch. For zinc alloy hardware clients, our simplified 3-stage setup (pre-set parameters for common parts) reduced operator training time by 50%.

We’re advancing two key innovations: 1) Self-learning stage tuning (AI analyzes defect data to optimize speeds/pressures automatically); 2) Cross-alloy parameter libraries (pre-loaded settings for aluminum, Zink, and magnesium, Reduzierung der Setup -Zeit durch 70%). Our goal is to make staged injection accessible—turning complex parameters into intuitive, reliable controls that boost quality and efficiency for every client.

FAQ

  1. Can I skip stages (Z.B., deceleration) to speed up cycle time?

Skipping stages risks costly defects. Zum Beispiel, skipping deceleration increases flash by 30–50% (requiring extra trimming time) and shortens mold life by 20% (due to excess impact). Stattdessen, optimize existing stages: Z.B., reduce slow stage speed by 0.1m/s (cuts 0.3s/cycle) without sacrificing air expulsion.

  1. Do hot chamber machines use the same stage classifications as cold chamber?

Hot chamber machines (for zinc/magnesium) often use simplified 3-stage division—they have shorter pressure chambers (less air to expel), so the 5-stage “accumulation” stage is unnecessary. Jedoch, modern hot chamber machines (post-2015) can use 4-stage division for high-precision parts (Z.B., Komponenten für medizinische Geräte).

  1. How do I know if my stage parameters are optimized?

Use three tests: 1) Air detection: Check for bubbles via X-ray (porosity grade ≤2 per ASTM E446). 2) Fill test: Use a high-speed camera (1000fps) to confirm no splashing or turbulence. 3) Density test: Measure part density (≥99.2% for aluminum alloys). If all pass, your parameters are optimized.

Index
Scrollen Sie nach oben