What Is Silicone Molding Technology and Its Core Applications?

Polyester -PBT -CNC -Bearbeitung

Silicone molding technology is a manufacturing process that transforms liquid silicone rubber (LSR) or solid silicone compounds into precision-shaped products via controlled curing. It leverages silicone’s unique elasticity, Wärmewiderstand, and biocompatibility to serve industries from cultural relic protection to medical devices. But what makes this technology versatile, how do you select the right methods for specific needs, and how to avoid common production pitfalls?

1. Core Types of Silicone Molding Technology: Eine vergleichende Analyse

Silicone molding technology varies by material state and curing mechanism. The table below breaks down key types, ihre Stärken, und ideale Verwendungen:

TechnologieartSchlüsselmerkmaleVorteileEinschränkungenIdeale Anwendungsszenarien
Liquid Silicone Rubber (LSR) FormenUses two-component LSR (mixed 1:1 oder 10:1); cures at 120–180°CHohe Präzision (± 0,01 mm); no by-products; fast cycle time (30–60s/part)High equipment cost; requires specialized injection machinesMedizinprodukte (Z.B., Prothesenkomponenten), Babyprodukte (Z.B., pacifier nipples)
Solid Silicone Compression MoldingUses pre-cut solid silicone sheets; pressed in molds (160–200 ° C., 10–20 MPa)Low equipment investment; suitable for large parts; leicht zu skalierenLonger curing time (5–10min/part); lower detail resolutionIndustriesiegel, Kfz -Dichtungen, large craft molds
Silicone Coating & DippingApplies thin silicone layers via brushing/dipping; cures at room temp or low heatGleichmäßige Dicke (5–500 μm); adheres to diverse substrates (Metall, fabric)Limited to thin-walled products; slow for thick layersElectronic component waterproofing, cultural relic protective coatings
Vacuum-Assisted Silicone MoldingUses vacuum chambers to eliminate bubbles during pouring; for LSR or solid compoundsNo bubble defects; high surface finish (Ra≤1.6μm)Longer process time; requires vacuum equipmentPrecision jewelry molds, optische Komponenten, cultural relic replication

2. Material Selection for Silicone Molding: Match to Performance Needs

The success of silicone molding depends on choosing the right silicone type. Below is a guide to material categories and their key parameters:

A. Silicone Material Categories

MaterialkategorieSchlüsselmerkmaleCompliance -StandardsTypische Anwendungsfälle
Kondensations-Cure-SilikonReleases ethanol during curing; niedrige Kosten; Einfach zu bedienenIndustriell (no food/medical compliance)Ordinary crafts, non-critical seals
Additions-Cure-SilikonNo by-products; niedriger Schrumpfung (<0.1%); hohe ReinheitFDA/ISO 10993 (medizinisch); FDA 21 CFR (Essen)Medical prosthetics, food-contact molds (Z.B., chocolate molds)
FluorosiliconeHeat resistance up to 300°C; chemischer Widerstand (Säuren, Öle)MIL-STD-883 (Luft- und Raumfahrt); ASTM D2000 (Automobil)Aerospace seals, high-temperature industrial gaskets

B. Critical Material Parameters to Consider

  1. Härte (Ufer a):
  • 5–10 °: Ultra-soft (cultural relic cushions, medical skin contact parts)
  • 20–30°: Mittelschonend (resin craft molds, baby product components)
  • 40–60°: Hart (Industriesiegel, Kfz -Dichtungen)
  1. Viskosität:
  • Niedrig (<5,000 CP): Flows into micro-details (jewelry molds, electronic component coatings)
  • Hoch (>10,000 cP): Ideal for brushing/dipping (thick protective layers for cultural relics)
  1. Tear Strength:

4kN/m: High-durability needs (reusable molds, frequent-use seals)

  • 2–3kN/m: Budget-friendly, low-cycle products (disposable craft molds)

3. Standardized Workflow of Silicone Molding Technology

A typical silicone molding process follows 5 Schlüsselphasen, with strict controls at each step to ensure quality:

Bühne 1: Pre-Production Preparation

  1. Prototyp & Schimmeldesign:
  • For uneven substrates (Holz, Stein), Spray PVA water-soluble release agent to prevent silicone adhesion.
  • Fügen Sie Chamfers hinzu (0.5–1mm) to mold edges to avoid stress concentration and tearing.
  • For deep-hole structures, Magnetmuttern zur Positionierung nach dem Formen einbetten.
  1. Tooling -Setup:
  • Bauen Sie einen Eindämmungsrahmen (Glas/Acryl) 10cm höher als der höchste Punkt des Prototyps um ein Überlaufen zu verhindern.
  • Reservieren Sie eine Leimeinspritzöffnung (Durchmesser ≥1cm) und serpentinenförmige Auslassrillen zum Ablassen der Luft.

Bühne 2: Materialvorbereitung & Mischen

  1. Komponentenmischung:
  • Für LSR: Verwenden Sie zum Wiegen von AB-Komponenten eine elektronische Waage (Z.B., 1:1 Verhältnis) mit einer Genauigkeit von ±0,1 g.
  • Für festes Silikon: Schneiden Sie die Compounds in Rohlinge, die dem Hohlraumvolumen der Form entsprechen (Für Kompressionsschrumpfung 5–10 % hinzufügen).
  1. Entschäumen:
  • Gemischtes LSR in eine Vakuumkammer geben (-0.1MPA) für 15–20 Minuten; repeat 2–3 times at 5-minute intervals for bubble-free results.

Bühne 3: Formen & Heilung

TechnologieartMolding ProcessAushärteparameter
LSR MoldingInject mixed LSR into heated molds (120–150 ° C.) via specialized injection machinesHeilzeit: 30–60s; Druck: 5–10MPa
KompressionsformungPlace solid silicone blanks in molds; apply pressure (10–20 MPa) und Hitze (160–180 ° C.)Heilzeit: 5–10min; post-cure at 200°C for 2h to eliminate stress
Coating/DippingBrush/dip substrate in silicone; let stand for 10–15min to levelRoom-temperature cure: 24H; low-heat cure: 60°C for 2h

Bühne 4: Entformen & Nachbearbeitung

  1. Entformen:
  • Use thin plastic sheets to separate silicone from molds; tap the back gently to vibrate stuck parts.
  • For complex molds, pre-cut guide grooves (depth ≤1/3 of mold thickness) to ease peeling.
  1. Trimmen & Fertig:
  • Cut excess flash with sharp scissors; sand inner surfaces with 400–600 grit sandpaper for Ra≤1.6μm smoothness.

Bühne 5: Qualitätsinspektion

  • Dimensionsstabilität: Measure key dimensions 3 times with a caliper; ensure tolerance within ±0.5%.
  • Oberflächenqualität: Use a roughness meter to verify Ra≤1.6μm; check for pockmarks or bubbles.
  • Performance Testing: For high-cycle products, run dynamic fatigue tests (≥100,000 folds without tearing).

4. Troubleshooting Common Issues in Silicone Molding

Auch mit präzisen Kontrollen, issues may arise. Below is a cause-and-solution guide for frequent problems:

Problem PhenomenonGrundursachePractical Solution
Surface Pockmarks/ImperfectionsSubstrate contamination (oil/dust); environmental dust adhesionClean prototypes with alcohol; operate in a dust-free workshop.- Apply a thin release agent layer to smooth uneven surfaces.
Uneven ThicknessTurbulence from fast pouring; mold cavity design flawsUse a funnel for slow, layered pouring (1–2cm/min).- Optimize mold vents to balance pressure distribution.
Bubble TrappingInadequate vacuum defoaming; mixing too vigorouslyExtend vacuum time to 20–25min; Fügen Sie einen zweiten Entschäumungszyklus hinzu.- Silikon mit 30–50 U/min umrühren (vermeidet Lufteinschlüsse).
KantenlockeUngleichmäßige Härtungsschrumpfung; hohe Exotherme während des Formens– Wechseln Sie zur Aushärtung bei niedriger Temperatur (um 10–15°C reduzieren).- Fügen Sie eine 2-stündige Nachhärtung bei 60 °C hinzu, um innere Spannungen abzubauen.
Kurze LebensdauerKorrosion durch Harz-/Chemikalienrückstände; UV-Alterung– Formen mit Dampf reinigen + Nach jedem Gebrauch ein neutrales Reinigungsmittel verwenden.- Bewahren Sie Formen in undurchsichtigen Behältern auf (vermeidet UV-Belastung); Tragen Sie zur Langzeitlagerung Talkumpuder auf.

5. Industry-Specific Applications of Silicone Molding Technology

Silicone molding technology solves unique challenges across sectors. Here are key use cases with implementation details:

IndustrieAnwendungsfallMolding Technology UsedKey Innovations
Cultural Relic ProtectionFragile relic support & shape replicationVacuum-assisted LSR molding (5° Shore A ultra-soft silicone)Embedded optical fiber sensors to monitor relic stress in real time; glass fiber reinforced layer for durability
MedizinprodukteCustom orthotic insolesAddition-cure LSR molding (biocompatible grade)3D-scanned prototypes for personalized fit; post-cure at 120°C to meet ISO 10993 Biokompatibilitätsstandards
SpielzeugherstellungLimited-edition doll molds (multi-color parts)Modular compression molding (colored silicone)Separate head/body molds with magnetic positioning; colored silicone for easy part identification
ElektronikCircuit board waterproofingSilicone coating (low-viscosity LSR)Uniform 20μm coating; cures at 80°C to avoid damaging electronic components

6. Yigu Technology’s Perspective on Silicone Molding Technology

Bei Yigu Technology, we see silicone molding technology as a bridge between precision engineering and creative needs. For cultural relic protection projects, our vacuum-assisted LSR molding (5° Shore A silicone) has successfully replicated 200+ fragile artifacts, with 0.1mm detail accuracy and real-time stress monitoring. Für medizinische Kunden, our addition-cure LSR molding process meets FDA 21 CFR standards, delivering custom prosthetic components with <0.01mm dimensional tolerance.

We’re advancing two key innovations: 1) Developing eco-friendly LSR (reducing VOCs by 35%) for sustainable manufacturing; 2) Integrating AI into mold temperature control (optimizing curing time by 20% while maintaining quality). Our goal is to make silicone molding technology more accessible, effizient, and tailored to industry-specific challenges.

FAQ

  1. What’s the difference between LSR molding and solid silicone compression molding for medical products?

LSR molding is ideal for high-precision, Kleine medizinische Teile (Z.B., Katheterspitzen) due to its ±0.01mm tolerance and biocompatibility (no by-products). Solid silicone compression molding works for larger parts (Z.B., orthotic braces) and has lower equipment costs but longer cycle times. Always choose addition-cure LSR for implantable/skin-contact medical products.

  1. How to extend the service life of silicone molds made via this technology?

Formen mit Dampf reinigen + Neutrales Waschmittel (avoid sharp tools) after each use; store in opaque, dry containers (prevents UV aging); apply a thin talcum powder layer for storage over 1 Monat. For high-frequency use, add a 2-hour post-cure at 60°C every 50 cycles to refresh elasticity.

  1. Can silicone molding technology be used for high-temperature industrial parts (Z.B., 250° C+)?

Yes—use fluorosilicone material (heat resistance up to 300°C) with compression molding (180–200°C cure). Ensure a 4-hour post-cure at 220°C to enhance heat resistance. This setup is suitable for aerospace seals and high-temperature industrial gaskets, meeting MIL-STD-883 standards.

Index
Scrollen Sie nach oben