What Is Silicone Molding and Its Key Methods?

Polyether -Sulfon -PES -CNC -Bearbeitung

Silicone molding is a manufacturing process that transforms liquid or semi-solid silicone raw materials into elastomeric products with specific shapes and properties. It serves as the backbone of producing everything from daily necessities (Z.B., Küchenutensilien) to high-precision industrial parts (Z.B., Siegel). But with multiple molding techniques available, how do you choose the right one for your project, and what key factors ensure success?

1. A Comparison of 6 Core Silicone Molding Methods

Different silicone molding techniques are designed for specific scenarios—from mass production to small-batch customization. The table below breaks down their core features, Anwendungen, and key controls:

FormmethodeSchlüsselmerkmaleTypische AnwendungenCritical Control Parameters
KompressionsformungHohe Präzision; suitable for complex structures; MassenproduktionHigh-precision seals, Kfz -DichtungenSchimmelpilztemperatur (160–200 ° C.), Druck (5–50MPa), vulcanization time
InjektionsformungHohe Effizienz; low scrap rate; automatisiertMiniaturized parts (Z.B., electronic buttons, conductive connectors)Injektionsgeschwindigkeit (staged control), mold vacuum exhaust, plasticization temperature
ExtrusionsformenContinuous production; equal-section profilesRohre, Versiegelungsstreifen, rubber hosesDie design, barrel segmented heating, laser diameter monitoring
Gate MoldingFlexibel; low-cost for small batchesTransparent crafts, Schimmelprototypen, custom jewelryVacuum defoaming, layered infusion (für dicke Teile)
Beschichtung & ImpregnationDünn, uniform coverage; adheres to substratesFabric coating, PCB waterproof films, biomedical coatingsCoating thickness, adhesion (grid test), centrifugation speed (for impregnation)
Special MoldingInnovative; solves complex needsCold runner: zero-waste parts; 3D printing-assisted: complex textures; Co-Molding: Silikon + metal/plastic insertsIsolierung (cold runner), Harztyp (3D Druck), insert positioning (co-molding)

2. Step-by-Step Guide to 3 Common Molding Processes

For beginners or those selecting a method, here’s a linear breakdown of three widely used workflows:

A. Kompressionsformung (Ideal for High-Precision Seals)

  1. Materialvorbereitung: Weigh raw rubber, Füllstoffe, and vulcanizing agents per formula; mix evenly via a refiner.
  2. Plastizisierung: Reduce compound Mooney viscosity using the thin-pass method to improve plasticity.
  3. Preforming: Cut the compound into blanks that match the rough shape of the final product.
  4. Mold Vulcanization: Place blanks into the mold; heat and press in a flat vulcanizing machine (160–200 ° C., 5–50MPa).
  5. Nachbehandlung: Überschüssiges Material; conduct secondary vulcanization to remove volatiles and boost stability.

B. Injektionsformung (Best for Miniaturized, Mass-Produced Parts)

  1. Feeding: Automatically feed granular or strip compound into the machine’s barrel.
  2. Plastizisierung: Heat the barrel to soften the compound (temperature varies by silicone type).
  3. Injektion: Use high pressure to inject the softened compound into the closed mold cavity.
  4. Packing & Kühlung: Maintain pressure until the compound is initially cured; cool slightly to set shape.
  5. Entformen: A manipulator automatically removes the finished product—no manual trimming needed for most designs.

C. Extrusionsformen (Great for Continuous Profiles)

  1. Die Design: Customize the die opening to match the product’s cross-section (Z.B., round for pipes, rectangular for strips).
  2. Heizung & Extrusion: Heat the barrel in segments (front: plasticization; middle: constant temperature; rear: Bildung); push compound through the die.
  3. Überwachung: Verwenden Sie a laser diameter gauge to real-time check product dimensions and adjust extrusion speed if needed.
  4. Traction & Schneiden: Pull the extruded profile via a track system; cut it to the set length automatically.

3. Fehlerbehebung: Häufige Mängel & Lösungen

Even with proper process design, Es können Mängel auftreten. Below is a cause-and-effect guide to fix the most frequent issues:

Defect PhenomenonGrundursachePractical Solution
Bubble HolesAir trapped during mixing; gas released during vulcanizationVerwenden vacuum defoaming before molding; adopt gradient heating for vulcanization (avoids sudden gas expansion)
Glue Shortage (Unvollständige Füllung)Low silicone fluidity; insufficient glue injection volumeInjektionsdruck erhöhen (zum Injektionsforming); optimize gate position to improve flow; preheat silicone slightly
Sticky SurfaceIncomplete vulcanization; mold surface contaminationExtend vulcanization time or raise temperature; clean the mold with a solvent (Z.B., Isopropylalkohol) Vor dem Gebrauch
Dimensional DeviationUngleichmäßige Härtungsschrumpfung; inconsistent mold temperatureReserve a 1.5%–3% shrinkage allowance in mold design; ensure uniform mold heating (use temperature sensors)

4. Material & Equipment Selection Guide

Choosing the right materials and equipment directly impacts product quality. Use this table to match your needs:

Demand ScenarioRecommended Silicone TypeSupporting Equipment
Food-Grade Products (Z.B., silicone spatulas)FDA-certified liquid siliconeVacuum casting equipment (avoids contamination)
High-Precision Seals (Z.B., automotive oil seals)Silicone with vapor-phase silica filler (Steigert die Härte)Precision compression molding machine
Conductive Parts (Z.B., electronic buttons)Precipitation-method conductive silicone rubberVertical injection machine + static elimination device
High-Temperature-Resistant Parts (Z.B., industrial pipes)Phenyl silicone rubber (resists up to 300°C)Extruder + laser diameter gauge

5. Yigu Technology’s Perspective on Silicone Molding

Bei Yigu Technology, we see silicone molding as a driver of product innovation—not just a manufacturing step. For clients in healthcare, we’ve optimized coating molding to create biocompatible silicone films for medical devices, sicherstellen 99.8% adhesion and meeting global safety standards. Für Automobilkunden, unser Kompressionsformung process reduces seal defect rates to below 0.5% by refining temperature control and using high-purity fillers.

Looking forward, we’ll focus on two priorities: 1) Developing eco-friendly silicone materials that cut waste by 30% Und 2) Integrating AI into Injektionsformung to real-time adjust parameters, boosting efficiency by 20%. We aim to make silicone molding more sustainable, präzise, and accessible for all industries.

FAQ

  1. Which silicone molding method is best for small-batch custom products (Z.B., 50–100 Einheiten)?

Gate molding is ideal—it’s low-cost, flexibel, and doesn’t require expensive molds. Use additive liquid silicone for high transparency (Z.B., custom crafts) and vacuum defoaming to ensure quality.

  1. How to ensure food-grade safety in silicone molding for kitchenware?

Erste, wählen FDA-certified liquid silicone (no toxic additives). Zweite, use dedicated equipment (avoid cross-contamination with industrial-grade silicone). Dritte, conduct post-production tests (Z.B., leachate testing) um die Lebensmittelsicherheitsstandards zu erfüllen.

  1. What’s the main difference between compression molding and injection molding for silicone parts?

Compression molding is better for complex, Hochvorbereitete Teile (Z.B., Siegel) but has longer cycle times. Injection molding is faster (ideal for mass production of mini parts like buttons) and has lower scrap rates, but requires higher initial mold investment.

Index
Scrollen Sie nach oben