Was Sie über Silikon-Verbundkunststoffformteile wissen müssen?

Polymer-CNC-Bearbeitung

Silikon-Verbundkunststoffformteile sind Spezialkomponenten, die durch das Kopieren von Kunststoffteilen mithilfe von Silikonformen hergestellt werden – ein Prozess, der ein ausgewogenes Verhältnis von Präzision gewährleistet, Wirtschaftlichkeit, und Flexibilität. Im Gegensatz zur herkömmlichen Herstellung von Metallformen, Diese Methode nutzt die Elastizität von Silikon, um komplizierte Details nachzubilden und gleichzeitig die Produktionskosten für Kleinserien niedrig zu halten. In diesem Artikel werden die Grundprinzipien erläutert, Schritt-für-Schritt-Prozess, Vorteile, Einschränkungen, Und […]

Silicone composite plastic molding parts are specialized components produced by copying plastic parts using silicone molds—a process that balances precision, Wirtschaftlichkeit, und Flexibilität. Im Gegensatz zur herkömmlichen Herstellung von Metallformen, Diese Methode nutzt die Elastizität von Silikon, um komplizierte Details nachzubilden und gleichzeitig die Produktionskosten für Kleinserien niedrig zu halten. In diesem Artikel werden die Grundprinzipien erläutert, Schritt-für-Schritt-Prozess, Vorteile, Einschränkungen, and applications of these parts, with clear comparisons and real-world examples to help you determine if they’re suitable for your project.

1. Core Principle of Silicone Composite Plastic Molding

The process relies on silicone’s unique properties to bridge prototype design and plastic part production. Here’s how it works in three key stages:

  1. Herstellung von Silikonformen: Erste, A Prototyp (z.B., 3D-printed resin part, CNC-machined component) is used as a master model. Liquid silicone (mixed with a curing agent) is poured over the prototype and cured—capturing every detail (Texturen, Logos, komplexe Geometrien) of the master.
  2. Plastic Casting: Once the silicone mold is ready, liquid plastic materials (z.B., polyurethane resin, Epoxidharz) are poured into the mold. The mold’s flexibility ensures the plastic fills all corners, even tiny gaps or sharp edges.
  3. Aushärten & Entformen: The plastic cures (at room temperature or with mild heat) and hardens. Thanks to silicone’s elasticity, the mold can be easily peeled away from the plastic part—resulting in a replica that matches the original prototype’s structure and details with high accuracy.

Key Advantage of the Principle: Silicone’s ability to “copy and release” eliminates the need for expensive, rigid metal molds. Zum Beispiel, a prototype of a phone case with a raised brand logo will have that logo replicated exactly on every plastic part made from the silicone mold.

2. Step-by-Step Production Process

Creating silicone composite plastic molding parts follows a linear, repeatable workflow—each step critical to ensuring part quality and mold durability.

2.1 Prototype Preparation: The “Master Model” Stage

The prototype defines the final part’s shape and details. Choose a production method based on precision needs and complexity:

Prototype Production MethodKey CharacteristicsIdeal für
3D Drucken (SLA/DLP)– Hohe Präzision (±0,05 mm) for intricate details.- Glatte Oberfläche (Ra 0,8–1,6 μm) reduces sanding time.- Schnelle Abwicklung (12–24 hours for small parts).Komplexe Teile: electronic device shells (TV remote casings), Schmuckkomponenten, and parts with fine textures.
CNC-Bearbeitung– Ultrahohe Präzision (±0,01 mm) for tight tolerances.- Suitable for hard materials (Metall, Holz, rigid plastic).- Excellent for parts requiring smooth, flache Oberflächen.High-precision components: Kfz-Halterungen, medical device parts, and parts with strict dimensional requirements.
Hand EngravingLow cost for simple shapes.- Flexible for artistic, one-of-a-kind designs.- No specialized equipment needed.Simple or decorative parts: custom stationery, small decorative figurines, and low-precision prototypes.

Pro Tip: Regardless of the method, ensure the prototype is clean (no dust, Öl, or residue) and smooth—any flaws will be replicated in the silicone mold and final plastic parts.

2.2 Herstellung von Silikonformen: The “Negative Template” Stage

This stage transforms the prototype into a reusable mold. Follow these steps for optimal results:

  1. Mold Frame Setup:
  • Choose a frame material (Holz, Plastik, Metall) large enough to fit the prototype with 5–10mm of space on all sides (for silicone coverage).
  • Seal the frame edges with masking tape or acrylic sealant to prevent silicone leakage.
  1. Silicone Mixing:
  • Use a ratio of silicone to curing agent specified by the manufacturer (z.B., 10:1 for some condensation silicones, 1:1 for additive silicones).
  • Mix slowly and thoroughly to avoid air bubbles—uneven mixing causes incomplete curing or weak mold spots.
  1. Silicone Pouring:
  • Pour the silicone slowly over the prototype (tilt the frame to 45° to reduce bubble formation).
  • For thick molds (>10mm), verwenden layered pouring: pour 1/3 of the silicone, wait 30 minutes for bubbles to rise, then add the next layer.
  • Optional: Verwenden Sie a vacuum degassing machine (1–2 minutes at -0.1MPa) to remove trapped bubbles—critical for parts with tiny details (z.B., 0.5mm-wide slots).
  1. Aushärten:
  • Let the silicone cure at room temperature (20°C–25°C) for 4–24 hours (depends on silicone type and thickness).
  • For faster curing, use a low-temperature oven (50°C–60°C) to reduce time by 50% (z.B., 8 hours → 4 Std.).

2.3 Plastic Part Production: The “Replica” Stage

Now use the silicone mold to create the final plastic parts:

  1. Plastic Material Selection:

Choose based on the part’s end-use (Stärke, Flexibilität, chemische Beständigkeit):

Plastic MaterialSchlüsseleigenschaftenIdeale Anwendungen
Polyurethan (PU) HarzGood wear resistance and flexibility.- Fast curing (1–2 hours at 20°C).- Niedrige Kosten ($20–40 per kg).Funktionsteile: TV remote buttons, Spielzeugkomponenten, and flexible gaskets.
EpoxidharzHigh strength and chemical resistance.- Hitzebeständig (120°C–180°C after curing).- Low shrinkage (0.5–1 %).Strukturteile: Innenverkleidung von Kraftfahrzeugen, electronic device housings, and medical tool handles.
  1. Gießen & Aushärten:
  • Pour the liquid plastic into the silicone mold—control speed to avoid bubbles (use a small funnel for narrow mold openings).
  • Für komplexe Teile (z.B., parts with internal cavities), verwenden sectional pouring: fill one section, wait 10 Minuten, then fill the next to ensure full coverage.
  • Cure the plastic at room temperature (PU: 1–2 Stunden; Epoxidharz: 4–6 Stunden) or use mild heat to speed up curing.
  1. Entformen:
  • Gently peel the silicone mold away from the plastic part—silicone’s elasticity prevents damage to both the part and mold.
  • Trim excess plastic (Blitz) with a sharp knife for a clean finish.

3. Advantages of Silicone Composite Plastic Molding Parts

This method offers unique benefits for small-batch production and product development:

Advantage CategoryHauptvorteileReal-World Example
High-Precision ReplicationErfasst winzige Details (0.1mm–0.5mm), including textures, Logos, and complex geometries.A silicone mold replicates the fine “brushed metal” texture on a TV frame prototype—every plastic part has the same texture as the master model.
KosteneffizienzSilicone mold material costs 50–70% less than metal molds.- No expensive tooling needed for small batches (10–100 Teile).A startup saves \(5,000 by using a silicone mold (kosten: \)200) instead of a metal mold (kosten: $5,200) zu produzieren 50 test samples of a new smartwatch casing.
Schnelle AbwicklungFrom prototype to final parts in 3–7 days (vs. 2–4 weeks for metal molds).A consumer electronics company needs 20 TV remote prototypes for user testing—silicone composite molding delivers them in 4 Tage, vs. 2 Wochen mit traditionellen Methoden.
Flexibility for CustomizationEasy to adjust the mold or switch plastic materials for custom parts (z.B., different colors, Härte).A jewelry brand changes the color of PU resin in the same silicone mold to produce gold, Silber, and black versions of a pendant—no new mold needed.

4. Limitations to Consider

While highly useful, silicone composite plastic molding parts have constraints that may affect their suitability for some projects:

  1. Limited Mold Life: Silicone molds last 20–100 cycles (vs. 10,000+ cycles for metal molds). After repeated use, molds wear, deform, or develop tears—especially for parts with sharp edges (z.B., plastic clips) that scratch the mold.
  2. Lower Part Performance: Plastic parts made via this method have lower mechanical properties than those from injection molding. Zum Beispiel, epoxy resin parts from silicone molds have 10–15% lower tensile strength than injection-molded epoxy parts—making them unsuitable for high-stress applications (z.B., car suspension components).
  3. Low Production Efficiency: Each part requires manual pouring, Aushärten, and demolding—unlike injection molding, which produces 100+ parts per hour. For batches larger than 100 Teile, silicone composite molding becomes slower and more costly than traditional methods.

5. Key Application Fields

Silicone composite plastic molding parts excel in scenarios where small batches, Präzision, and speed are prioritized:

5.1 Produktentwicklung & Prototyping

  • Funktionstests: Create test samples for product teams to evaluate fit (z.B., TV remote buttons fitting into the casing), Montage (z.B., electronic components fitting into a device shell), und Haltbarkeit.
  • Appearance Evaluation: Produce parts with final textures and colors to assess consumer feedback (z.B., testing different colors of a phone case prototype).

5.2 Kleinserienproduktion & Anpassung

  • Niche Markets: Manufacture custom parts with low demand (z.B., personalized stationery, small-batch mechanical components for vintage cars).
  • Kunst & Kunsthandwerk: Create decorative items (z.B., custom candle holders, sculptural replicas) where detail and uniqueness matter more than mass production.

5.3 Reverse Engineering

  • Copy legacy parts for out-of-production equipment (z.B., old TV knobs, vintage radio casings) by using the original part as a prototype to make a silicone mold.

6. Yigu Technology’s Perspective on Silicone Composite Plastic Molding Parts

Bei Yigu Technology, we see silicone composite plastic molding as a “bridge” for product development—ideal for turning prototypes into tangible parts fast, without the cost of metal molds. A common mistake we see is clients overusing this method for large batches (200+ Teile)—after 100 Zyklen, mold wear leads to inconsistent parts, increasing rework costs. Our advice: Use it for 1–100 parts (Prototyping, small-batch testing) and switch to injection molding for larger volumes. Zum Beispiel, a client making TV interface panels used silicone molding for 50 test parts, then transitioned to metal molds for 1,000+ production units—this balanced speed, kosten, und Qualität. We also recommend choosing additive silicone (1:1 ratio) for high-precision parts (z.B., Komponenten medizinischer Geräte) to avoid shrinkage-related defects.

7. FAQ: Common Questions About Silicone Composite Plastic Molding Parts

Q1: Can I use silicone composite molding for parts that need to withstand high temperatures (z.B., 150°C)?

A1: Ja, but choose the right materials. Verwenden high-temperature resistant silicone (service temp: 200°C–300°C) for the mold and heat-resistant epoxy resin (cured temp: 120°C–180°C) for the part. Test a sample first—expose it to 150°C for 24 hours to ensure no deformation. Avoid standard silicone (max temp: 150°C) or PU resin (max temp: 80°C) for high-heat applications.

Q2: How can I extend the life of my silicone mold?

A2: – Clean the mold with mild soap and water after each use (avoid harsh solvents like acetone, which break down silicone).- Apply a thin layer of silicone oil to the mold before pouring plastic—reduces friction and wear.- Store the mold in a cool, dry place (Luftfeuchtigkeit <60%) and avoid folding or stretching it (prevents tears).

Q3: Are silicone composite plastic parts suitable for food-contact applications (z.B., plastic cups)?

A3: Only if you use food-grade materials. Wählen food-grade silicone for the mold and food-safe PU/epoxy resin (certified by FDA or EU food safety standards). Regular silicone and plastic materials may leach chemicals into food—never use them for food-contact parts. Test the final part for compliance (z.B., FDA 21 CFR 177.2600 for resin) vor dem Gebrauch.

Index
Scrollen Sie nach oben