If you work with 3D printed light-cured parts—whether for prototypes, medizinische Modelle, or jewelry—understanding surface roughness is critical to meeting quality and functional needs. Light-cured 3D printing (like SLA and DLP) is known for high detail, but its surface roughness can vary widely from Ra 0.5 μm bis ra 5 μm depending on key factors. This guide breaks down typical roughness ranges, core influencing factors, practical application standards, and actionable tips to improve surface quality.
1. Typical Roughness Ranges for 3D Printed Light-Cured Surfaces
Light-cured 3D printing (SLA and DLP) produces smoother surfaces than many other technologies (Z.B., FDM), but the exact roughness depends on technology type, Parameter, und Materialien. Below is a detailed breakdown of standard ranges:
Technologieart | Typical Roughness (Ra) | Optimal Roughness (With Optimization) | Key Advantages for Surface Quality |
SLA (Stereolithic) | 1 μm ~ 3 μm | < 1 μm | High laser precision, Minimale Schichtlinien |
DLP (Digitale Lichtverarbeitung) | 1 μm ~ 5 μm | ~ 1 μm (High-Resolution DLP) | Schneller Druck; 4K projectors narrow roughness gaps with SLA |
Allzweckharz (Any Tech) | 2 μm ~ 5 μm | 1 μm ~ 2 μm (With Post-Processing) | Kostengünstig; suitable for non-critical prototypes |
High-Precision Resin (Z.B., Zahnärztlich) | < 1 μm | 0.5 μm ~ 1 μm (With Fine Tuning) | Niedriger Schrumpfung; ideal for medical or jewelry parts |
Notiz: Ra (Average Surface Roughness) is the most common metric—lower values mean smoother surfaces. Als Referenz, a polished metal surface has an Ra of ~0.02 μm, while a standard light-cured part (ohne Nachbearbeitung) falls between 1 μm ~ 3 μm.
2. 4 Core Factors That Impact Light-Cured Surface Roughness
Surface roughness isn’t random—it’s shaped by controllable factors. Understanding these lets you adjust parameters to achieve your desired smoothness. Below is a breakdown with specific examples and data:
(1) Drucktechnologie & Equipment Precision
The type of light-curing technology and device resolution directly affect surface quality:
- SLA: Uses a focused UV laser to cure resin layer by layer. Industrial-grade SLA machines (Z.B., Stratasys) have laser spot sizes as small as 0.02 mm, producing surfaces with Ra < 1 μm. Consumer-grade SLA machines may have larger spots (0.05 mm ~ 0.1 mm), leading to Ra 2 μm ~ 3 μm.
- DLP: Uses a projector to cure entire layers at once. Resolution matters here—4K DLP projectors (with smaller pixel sizes) can reach Ra ~ 1 μm, while 1080p projectors may result in Ra 3 μm ~ 5 μm due to visible pixel edges.
(2) Druckparameter
Even with the right equipment, poor parameter settings can ruin surface smoothness. The two most critical parameters are:
Schichtdicke
Thinner layers mean fewer visible layer lines, but overly thin layers can cause resin flow issues. Here’s how layer thickness impacts roughness:
Schichtdicke | Typical Roughness (Ra) | Notizen |
0.025 mm | 0.5 μm ~ 1 μm | Ideal for high-detail parts (Z.B., Schmuck) |
0.05 mm | 1 μm ~ 2 μm | Balances smoothness and print speed |
0.1 mm | 2 μm ~ 3 μm | Schneller Druck; sichtbare Schichtlinien |
> 0.1 mm | 3 μm ~ 5 μm | Only for rough prototypes |
Expositionszeit
- Insufficient exposure: Resin doesn’t cure fully, leaving sticky, ungleiche Oberflächen (Ra can jump to 4 μm ~ 6 μm).
- Overexposure: Resin shrinks excessively, causing warping or surface cracks (Ra increases by 1 μm ~ 2 μm).
Beste Practice: Follow the resin manufacturer’s recommended exposure time (Z.B., 5 seconds per layer for standard resin).
(3) Resin Material Properties
Not all resins are equal—formulation affects shrinkage and surface finish:
- Schwindung: Most resins shrink 2% ~ 8% Während der Heilung. High-shrinkage resins (Z.B., Allzweckharz) pull the surface unevenly, leading to Ra 2 μm ~ 5 μm. Low-shrinkage resins (Z.B., zahnmedizinisches Harz) shrink < 2%, producing Ra < 1 μm.
- Harztyp:
- General-purpose resin: Ra 2 μm ~ 5 μm; affordable but rough.
- High-precision resin (Z.B., for medical models): Ra < 1 μm; formulated for minimal shrinkage.
- Flexible resin: Slightly higher roughness (Ra 1.5 μm ~ 3 μm) due to elastic properties.
(4) Post-Processing Processes
Post-processing is the final step to refine surface roughness—even a rough printed part can become smooth with the right treatments:
Nachbearbeitungsschritt | Roughness Reduction (Ra) | Kostenbereich (RMB/Stück) | Am besten für |
Simple Cleaning (Isopropyl Alcohol) | 0.5 μm ~ 1 μm | 5 ~ 10 | Removes uncured resin; grundlegende Glätte |
Schleifen (1200 ~ 2000 Grit Sandpaper) | 2 μm ~ 4 μm | 20 ~ 50 | Eliminates layer lines; Ra drops from 5 μm zu < 1 μm |
Polieren (Polierpaste) | 0.3 μm ~ 0.5 μm | 30 ~ 80 | Mirror-like finish; ideal for jewelry |
Sekundäre UV-Härtung | 0.2 μm ~ 0.5 μm | 10 ~ 30 | Reduces stickiness; improves surface uniformity |
Sprühen (Clear Coat) | 0.5 μm ~ 1 μm | 40 ~ 100 | Fills micropores; adds protection |
3. Surface Roughness Standards for Practical Applications
Different use cases require different levels of smoothness. Below are common applications and their recommended roughness:
Anwendungstyp | Required Roughness (Ra) | Post-Processing Needed? | Hauptbegründung |
Grundlegende Prototypen (Z.B., part fit checks) | 2 μm ~ 5 μm | NEIN | Smoothness isn’t critical; saves time/cost |
Ästhetische Teile (Z.B., individuelle Figuren) | 1 μm ~ 2 μm | Ja (Schleifen + Polieren) | Visible surface quality matters |
Medizinische Modelle (Z.B., Zahnkronen) | 0.5 μm ~ 1 μm | Ja (High-Precision Polishing) | Prevents bacterial growth; ensures biocompatibility |
Schmuck (Z.B., Anhänger) | < 1 μm | Ja (Polieren + Clear Coat) | Mirror finish enhances appearance |
Funktionsteile (Z.B., kleine Zahnräder) | 1 μm ~ 2 μm | Ja (Schleifen) | Reduziert die Reibung; improves part longevity |
4. 5 Step-by-Step Tips to Improve Light-Cured Surface Roughness
If your parts are too rough, follow these actionable steps to optimize smoothness:
- Wählen Sie die richtige Technologie: Use industrial-grade SLA or 4K DLP for Ra < 1 μm; avoid low-resolution DLP machines for high-detail parts.
- Set thin, but not too thin, Schichten: Beginnen Sie mit 0.05 MM -Schichten (balances smoothness and speed); verwenden 0.025 mm for critical parts.
- Select low-shrinkage resin: Opt for dental or high-precision resin instead of general-purpose resin to reduce surface warping.
- Master exposure time: Test 3–5 exposure times (Z.B., 4S, 5S, 6S) to find the sweet spot—avoid under/overexposure.
- Invest in post-processing: For Ra < 1 μm, sand with 1200 Schleifpapier, then polish with a microfiber cloth and polishing paste.
Yigu Technology’s Perspective on Light-Cured Surface Roughness
Bei Yigu Technology, Wir glauben balance between precision, kosten, and application needs is key to managing light-cured surface roughness. Many clients overspend on ultra-thin layers or expensive post-processing when their parts don’t require it—for example, Verwendung 0.025 mm layers for basic prototypes (unnecessary for Ra 2 μm ~ 5 μm). Our team helps clients match parameters to their use case: for dental models, we recommend industrial SLA + low-shrinkage resin + high-precision polishing (achieves Ra 0.5 μm ~ 1 μm); Für Prototypen, we suggest 0.1 MM -Schichten + no post-processing (rettet 30% ~ 50% of time/cost). We also provide resin testing kits to let clients compare shrinkage and roughness before full-scale production—ensuring they get the right smoothness without overpaying.
FAQ
- Can DLP ever be smoother than SLA for light-cured parts?
Yes—high-resolution 4K DLP machines (with pixel sizes < 0.01 mm) can reach Ra ~ 1 μm, matching mid-grade SLA machines. Jedoch, industrial-grade SLA (with smaller laser spots) still outperforms DLP for ultra-smooth surfaces (Ra < 1 μm).
- Why does overly thin layer thickness (Z.B., < 0.02 mm) increase roughness?
Thinner layers require more frequent resin refilling, which can cause uneven resin levels across the build plate. This leads to inconsistent curing and visible surface defects, pushing Ra up by 1 μm ~ 2 μm compared to 0.025 MM -Schichten.
- How much does post-processing (Schleifen + Polieren) reduce roughness?
For a part with initial Ra 5 μm (aus 0.1 MM -Schichten + general resin), sanding with 1200 grit sandpaper can drop Ra to 1 μm ~ 2 μm. Adding polishing paste further reduces it to < 1 μm—total roughness reduction of 80% ~ 90%.