Was bestimmt die plastische Festigkeit beim 3D-Druck?, und was man wählen sollte?

Polyurethan-Spritzguss

Beim 3D-Druck von Funktionsteilen – sei es für Prototypen, Industriekomponenten, oder Endprodukte – die Kunststofffestigkeit ist der entscheidende Faktor für die Leistung. Ein Teil, dem es an ausreichender Festigkeit mangelt, kann unter Belastung reißen, versagen bei hohen Temperaturen, oder schnell verschleißen. In diesem Artikel werden die wichtigsten hochfesten Kunststoffe für den 3D-Druck aufgeschlüsselt, ihre Stärkemetriken, und wie man das Richtige auswählt […]

When 3D printing functional parts—whether for prototypes, Industriekomponenten, or end-use products—plastic strength is the make-or-break factor for performance. Ein Teil, dem es an ausreichender Festigkeit mangelt, kann unter Belastung reißen, versagen bei hohen Temperaturen, oder schnell verschleißen. In diesem Artikel werden die wichtigsten hochfesten Kunststoffe für den 3D-Druck aufgeschlüsselt, ihre Stärkemetriken, and how to select the right one for your project.

1. Key Metrics: How to Measure Plastic Strength for 3D Printing?

Before comparing materials, it’s critical to understand the core metric used to evaluate strength: Zugfestigkeit. Measured in megapascals (MPa), it represents the maximum force a material can withstand before breaking when pulled.

Strength MetricDefinitionRelevance for 3D Printing
Zugfestigkeit (MPa)Force required to break a material under tensionDetermines if a part can handle pulling or stretching loads (z.B., Klammern, Scharniere)
SchlagfestigkeitAbility to absorb energy without breaking (often tested via Izod/Charpy tests)Critical for parts that may experience shocks (z.B., Werkzeuggriffe, Automobilkomponenten)
Hitzebeständigkeit (°C)Temperature at which strength drops by 50% (HDT, Wärmeformbeständigkeitstemperatur)Essential for parts used in high-heat environments (z.B., Motorkomponenten, 3D printer nozzles)

2. High-Strength Plastics for 3D Printing: Comparison Table

Below is a detailed breakdown of 5 common high-strength 3D printing plastics, including their tensile strength, key features, and ideal applications. This table helps you quickly match materials to your project’s strength needs.

Plastic TypeTensile Strength Range (MPa)HauptmerkmaleIdeale Anwendungen
Polymilchsäure (PLA)40–60Gute Dimensionsstabilität; geringe Verformung; einfach zu drucken; umweltfreundlich (biologisch abbaubar)Low-load prototypes (z.B., mechanical part models, electronic device shells)
Acrylnitril-Butadien-Styrol (ABS)30–50Ausgewogene Stärke & Zähigkeit; gute Hitzebeständigkeit (~90–110°C); schlagfestMid-load parts (z.B., Automobil-Innenraumkomponenten, Werkzeuggriffe, Strukturrahmen)
Polycarbonat (PC)60–70Exceptional impact resistance; hohe Hitzebeständigkeit (~130–140°C); transparentHochfest, high-heat parts (z.B., Luft- und Raumfahrtkomponenten, Gehäuse für medizinische Geräte, safety covers)
Nylon (PA)50–80 (variiert je nach Typ)Hervorragende Verschleißfestigkeit; Ermüdungsbeständigkeit (handles repeated loads); gute FlexibilitätHigh-wear, repetitive-load parts (z.B., Getriebe, Lager, sports equipment components)
Carbon Fiber-Reinforced Composites100–1,000+Extremely high strength & Steifigkeit; leicht (50% leichter als Stahl); hitzebeständigUltra-high-strength, leichte Teile (z.B., aerospace structural parts, Hochleistungskomponenten für die Automobilindustrie, racing gear)

3. How to Choose the Right High-Strength Plastic? (Schritt-für-Schritt-Anleitung)

Selecting the best plastic for your 3D print isn’t just about picking the highest tensile strength. Follow this linear, question-driven process to align material choice with your project’s unique needs:

Schritt 1: Define Your Strength Priority

Ask: What type of stress will the part face?

  • Tension (pulling): Prioritize higher tensile strength (z.B., nylon for gears, carbon fiber composites for structural parts).
  • Impact (shocks): Choose materials with strong impact resistance (z.B., PC for safety covers, ABS for tool handles).
  • Hitze + Stärke: Opt for heat-resistant plastics (z.B., PC for high-temp components, carbon fiber composites for extreme environments).

Schritt 2: Factor in Printing Practicality

Even the strongest plastic won’t work if it’s hard to print. Zum Beispiel:

  • Beginners: Start with PLA (geringe Verformung, einfach zu drucken) for low-load prototypes.
  • Advanced users: Try PC oder Nylon (require heated enclosures to prevent warping) for high-strength parts.

Schritt 3: Balance Cost & Leistung

  • Budget-limited projects: PLA (niedrige Kosten) oder ABS (mid-cost) work for most prototypes.
  • High-performance needs: Invest in Kohlefaserverbundwerkstoffe (higher cost but unmatched strength-to-weight ratio) only if critical to the part’s function.

4. Yigu Technology’s Perspective on High-Strength 3D Printing Plastics

Bei Yigu Technology, we often advise clients to avoid over-specifying plastic strength for 3D printing. Many projects don’t need the highest-tensile materials—for example, a display prototype can use PLA (40–60 MPa) instead of carbon fiber (100+ MPa), Kosten senken um 60% without sacrificing performance. For functional parts, we recommend testing with a “baseline material” first: use ABS for mid-load parts, then upgrade to PC or nylon only if real-world testing reveals strength gaps. This approach ensures clients get durable parts without unnecessary expenses, while our in-house printing team optimizes settings (z.B., Schichthaftung, Fülldichte) to maximize the chosen plastic’s strength.

FAQ: Common Questions About Plastic Strength for 3D Printing

  1. Q: If PLA has higher tensile strength than ABS (40–60 MPa vs. 30–50 MPa), why use ABS for functional parts?

A: While PLA has higher tensile strength, ABS offers better toughness and heat resistance. PLA becomes brittle at <0°C and softens at ~60°C, making it unsuitable for parts exposed to temperature changes or impacts—areas where ABS excels.

  1. Q: Can I increase the strength of a 3D-printed part without changing the plastic?

A: Ja. Adjusting printing settings like Fülldichte (higher = stronger, z.B., 80–100% for load-bearing parts) Und Schichthöhe (thinner layers = better layer adhesion) can boost strength by 20–40%. Adding reinforcement (z.B., inserting metal rods into PLA brackets) also works for high-load needs.

  1. Q: Is carbon fiber-reinforced plastic always the best choice for high-strength parts?

A: NEIN. It’s overkill for low-to-mid load parts (z.B., kleine Zahnräder) and has drawbacks: it’s expensive, abrasive to 3D printer nozzles (requires hardened steel nozzles), and is less flexible than nylon. Use it only when you need both ultra-high strength and lightweight properties.

Index
Scrollen Sie nach oben